The bacterium Myxococcus xanthus glides through soil in search of prey microbes, but when food
sources run out, cells cooperatively construct and sporulate within multicellular fruiting bodies.
M. xanthus strains isolated from a 16 × 16-cm-scale patch of soil were previously shown to have
diversified into many distinct compatibility types that are distinguished by the failure of swarming
colonies to merge upon encounter. We sequenced the genomes of 22 isolates from this population
belonging to the two most frequently occurring multilocus sequence type (MLST) clades to trace
patterns of incipient genomic divergence, specifically related to social divergence. Although
homologous recombination occurs frequently within the two MLST clades, we find an almost
complete absence of recombination events between them. As the two clades are very closely related
and live in sympatry, either ecological or genetic barriers must reduce genetic exchange between
them. We find that the rate of change in the accessory genome is greater than the rate of amino-acid
substitution in the core genome. We identify a large genomic tract that consistently differs between
isolates that do not freely merge and therefore is a candidate region for harbouring gene(s)
responsible for self/non-self discrimination