441 research outputs found

    Cryogenic Buffer Gas beams of AlF, CaF, MgF, YbF, Al, Ca, Yb and NO -- a comparison

    Get PDF
    Cryogenic buffer gas beams are central to many cold molecule experiments. Here, we use absorption and fluorescence spectroscopy to directly compare molecular beams of AlF, CaF, MgF, and YbF molecules, produced by chemical reaction of laser ablated atoms with fluorine rich reagents. The beam brightness for AlF is measured as 2 X 1012 molecules per steradian per pulse in a single rotational state, comparable to an Al atomic beam produced in the same setup. The CaF, MgF and YbF beams show an order of magnitude lower brightness than AlF, and far below the brightness of Ca and Yb beams. The addition of either NF3 or SF6 to the cell extinguishes the Al atomic beam, but has a minimal effect on the Ca and Yb beams. NF3 reacts more efficiently than SF6, as a significantly lower flow rate is required to maximise the molecule production, which is particularly beneficial for long-term stability of the AlF beam. We use NO as a proxy for the reactant gas as it can be optically detected. We demonstrate that a cold, rotationally pure NO beam can be generated by laser desorption, thereby gaining insight into the dynamics of the reactant gas inside the buffer gas cell

    Spectroscopic characterization of singlet-triplet doorway states of aluminum monofluoride

    Get PDF
    Aluminum monofluoride (AlF) possesses highly favorable properties for laser cooling, both via the A1Π and a3Π states. Determining efficient pathways between the singlet and the triplet manifold of electronic states will be advantageous for future experiments at ultralow temperatures. The lowest rotational levels of the A1Π, v = 6 and b3Σ+, v = 5 states of AlF are nearly iso-energetic and interact via spin–orbit coupling. These levels thus have a strongly mixed spin-character and provide a singlet–triplet doorway. We here present a hyperfine resolved spectroscopic study of the A1Π , v = 6//b3Σ+, v = 5 perturbed system in a jet-cooled, pulsed molecular beam. From a fit to the observed energies of the hyperfine levels, the fine and hyperfine structure parameters of the coupled states and their relative energies as well as the spin–orbit interaction parameter are determined. The standard deviation of the fit is about 15 MHz. We experimentally determine the radiative lifetimes of selected hyperfine levels by time-delayed ionization, Lamb dip spectroscopy, and accurate measurements of the transition lineshapes. The measured lifetimes range between 2 and 200 ns, determined by the degree of singlet–triplet mixing for each level

    Asynchronous Games over Tree Architectures

    Get PDF
    We consider the task of controlling in a distributed way a Zielonka asynchronous automaton. Every process of a controller has access to its causal past to determine the next set of actions it proposes to play. An action can be played only if every process controlling this action proposes to play it. We consider reachability objectives: every process should reach its set of final states. We show that this control problem is decidable for tree architectures, where every process can communicate with its parent, its children, and with the environment. The complexity of our algorithm is l-fold exponential with l being the height of the tree representing the architecture. We show that this is unavoidable by showing that even for three processes the problem is EXPTIME-complete, and that it is non-elementary in general

    Phonon Squeezed States Generated by Second Order Raman Scattering

    Full text link
    We study squeezed states of phonons, which allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. We investigate the generation of squeezed phonon states using a second order Raman scattering process. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments.Comment: 4 pages, REVTE

    Local Strategy Improvement for Parity Game Solving

    Full text link
    The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may cover only a fractional part of the entire game graph. We present a local strategy improvement algorithm which explores the game graph on-the-fly whilst performing the improvement steps. We also compare it empirically with existing global strategy improvement algorithms and the currently only other local algorithm for solving parity games. It turns out that local strategy improvement can outperform these others by several orders of magnitude

    Imaging of Chemical Kinetics at the Water-Water Interface in a Free-Flowing Liquid Flat-Jet

    Get PDF
    We present chemical kinetics measurements of the luminol oxidation chemiluminescence (CL) reaction at the interface between two aqueous solutions, using liquid jet technology. Free-flowing liquid microjets are a relatively recent development that have found their way into a growing number of applications in spectroscopy and dynamics. A variant thereof, called flat-jet, is obtained when two cylindrical jets of a liquid are crossed, leading to a chain of planar leaf-shaped structures of the flowing liquid. We here show that in the first leaf of this chain, the fluids do not exhibit turbulent mixing, providing a clean interface between the liquids from the impinging jets. We also show, using the example of the luminol CL reaction, how this setup can be used to obtain kinetics information from friction-less flow and by circumventing the requirement for rapid mixing by intentionally suppressing all turbulent mixing and instead relying on diffusion

    Spectroscopic characterization of aluminum monofluoride with relevance to laser cooling and trapping

    Get PDF
    Here we report on spectroscopic measurements of the aluminum monofluoride molecule (AlF) that are relevant to laser cooling and trapping experiments. We measure the detailed energy level structure of AlF in the X1Σ+^1\Sigma^+ electronic ground state, in the A1Π^1\Pi state, and in the metastable a3Π^3\Pi state. We determine the rotational, vibrational and electronic branching ratios from the A1Π^1\Pi state. We also study how the rotational levels split and shift in external electric and magnetic fields. We find that AlF is an excellent candidate for laser cooling on any Q-line of the A1Π^1\Pi - X1Σ+^1\Sigma^+ transition and for trapping at high densities

    LES-based Study of the Roughness Effects on the Wake of a Circular Cylinder from Subcritical to Transcritical Reynolds Numbers

    Get PDF
    This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.We acknowledge “Red Española de Surpercomputación” (RES) for awarding us access to the MareNostrum III machine based in Barcelona, Spain (Ref. FI-2015-2-0026 and FI-2015-3-0011). We also acknowledge PRACE for awarding us access to Fermi and Marconi Supercomputers at Cineca, Italy (Ref. 2015133120). Oriol Lehmkuhl acknowledges a PDJ 2014 Grant by AGAUR (Generalitat de Catalunya). Ugo Piomelli acknowledges the support of the Natural Sciences and Engineering Research Council (NSERC) of Canada under the Discovery Grant Programme (Grant No. RGPIN-2016-04391). Ricard Borrell acknowledges a Juan de la Cierva postdoctoral grant (IJCI-2014-21034). Ivette Rodriguez, Oriol Lehmkuhl, Ricard Borrell and Assensi Oliva acknowledge Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (ref. ENE2014-60577-R).Peer ReviewedPostprint (author's final draft

    Climate and southern Africa's water-energy-food nexus

    Get PDF
    In southern Africa, the connections between climate and the water-energy-food nexus are strong. Physical and socioeconomic exposure to climate is high in many areas and in crucial economic sectors. Spatial interdependence is also high, driven for example, by the regional extent of many climate anomalies and river basins and aquifers that span national boundaries. There is now strong evidence of the effects of individual climate anomalies, but associations between national rainfall and Gross Domestic Product and crop production remain relatively weak. The majority of climate models project decreases in annual precipitation for southern Africa, typically by as much as 20% by the 2080s. Impact models suggest these changes would propagate into reduced water availability and crop yields. Recognition of spatial and sectoral interdependencies should inform policies, institutions and investments for enhancing water, energy and food security. Three key political and economic instruments could be strengthened for this purpose; the Southern African Development Community, the Southern African Power Pool, and trade of agricultural products amounting to significant transfers of embedded water
    • …
    corecore