351 research outputs found

    Unusual Nucleophilic Addition of Grignard Reagents in the Synthesis of 4-Amino-pyrimidines

    Get PDF
    Pyrimidines have always received considerable attention because of their importance in synthesis and elucidation of biochemical roles, in particular that of vitamin B1. Herein, we describe a reaction pathway in a Grignard reagent-based synthesis of substituted pyrimidines. A general synthesis of α-keto-2-methyl-4-amino pyrimidines and their C6-substituted analogues from 4-amino-5-cyano-2-methylpyrimidine is reported. The presence of the nitrile substituent in the starting material also results in an unusual reaction pathway leading to C6-substituted 1,2-dihydropyrimidines. Grignard reagents that give normal pyrimidine products under standard reaction conditions can be 14 switched to give dihydropyrimidines by holding the reaction at 0 °C before quenching

    Upper-rim monofunctionalisation in the synthesis of triazole- and disulfide-linked multicalix[4]- and -[6]arenes.

    Get PDF
    Covalently linked multiple calixarenes are valued in supramolecular chemistry. We report an easy and versatile synthetic route to covalently linked double and triple calix[4]arene and calix[6]arenes by a novel DMF‐controlled selective alkylation of a convenient and readily available upper‐rim dimethylaminomethyl‐substituted tetrahydroxy calix[4]arene and ‐[6]arenes. Synthetic routes to upper‐rim functionalised redox active disulfide‐linked double‐, tetra‐ and peptidohybrid‐calixarenes employing either redox chemistry (CH2SH) or thiolates (CH2S–) are also opened up from the same key starting material

    A Gravitational Instability-Driven Viscosity in Self-Gravitating Accretion Disks

    Get PDF
    We derive a viscosity from gravitational instability in self-gravitating accretion disks, which has the required properties to account for the observed fast formation of the first super-massive black holes in highly redshifted quasars and for the cosmological evolution of the black hole-mass distribution.Comment: 14 pages, 1 figure, ApJ Letters (in press

    Synthesis of novel stilbene–coumarin derivatives and antifungal screening of monotes kerstingii-specialized metabolites against fusarium oxysporum

    Get PDF
    Fusarium is one of the most toxigenic phytopathogens causing diseases and reduced agricultural productivity worldwide. Current chemical fungicides exhibit toxicity against non-target organisms, triggering negative environmental impact, and are a danger to consumers. In order to explore the chemical diversity of plants for potential antifungal applications, crude extract and fractions from Monotes kerstingii were screened for their activity against two multi-resistant Fusarium oxysporum strains: Fo32931 and Fo4287. Antifungal activity was evaluated by the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts using kinetic OD600 nm reading by a spectrophotometer. The n-butanol fraction showed the best activity against Fo4287. We screened eleven previously reported natural compounds isolated from different fractions, and a stilbene–coumarin 5-[(1E)-2-(4-hydroxyphenyl)ethenyl]-4,7-dimethoxy-3-methyl-2H-1-benzopyran-2-one (1) was the most active compound against both strains. Compound 1 was employed as a nucleophile with a selection of electrophilic derivatizing agents to synthesize five novel stilbene–coumarin analogues. These semisynthetic derivatives showed moderate activity against Fo32931 with only prenylated derivative exhibiting activity comparable to the natural stilbene–coumarin (1), demonstrating the key role of the phenolic group

    Asymmetric Oxidation of Enol Derivatives to α-Alkoxy Carbonyls Using Iminium Salt Catalysts: A Synthetic and Computational Study

    Get PDF
    We report herein the first examples of asymmetric oxidation of enol ether and ester substrates using iminium salt organocatalysis, affording moderate to excellent enantioselectivities of up to 98% ee for tetralone-derived substrates in the α-hydroxyketone products. A comprehensive density functional theory study was undertaken to interpret the competing diastereoisomeric transition states in this example in order to identify the origins of enantioselectivity. The calculations, performed at the B3LYP/6-31G(D) level of theory, gave good agreement with the experimental results, in terms of the magnitude of the effects under the specified reaction conditions, and in terms of the preferential formation of the (R)-enantiomer. Just one of the 30 characterized transition states dominates the enantioselectivity, which is attributed to the adoption of an orientation relative to stereochemical features of the chiral controlling element that combines a CH interaction between a CH 2 group in the substrate and one of the aromatic rings of the biaryl section of the chiral auxiliary with a good alignment of the acetoxy group with the other biaryl ring, and places the smallest substituent on the alkene (a hydrogen atom) in the most sterically hindered position

    Synthesis and photophysical properties of iron-carbonyl complex-coumarin conjugates as potential bimodal IR-fluorescent probes

    Get PDF
    An expedient synthesis of the first examples of iron-carbonyl complex-coumarin conjugates is reported. 7-Amino/7-hydroxycoumarin derivatives have been readily derivatized through an easily implemented single-step reaction involving the tricarbonyl(η5-cyclohexadienyl)iron(1+) cation [(C6H7)Fe(CO)3]+. The scope and limitations of this N-/O-alkylation reaction were also investigated. The fluorescence properties of these novel metal-carbonyl complexes have been studied and support their further use as valuable building blocks in the design of bimodal contrast agents for combined vibrational and fluorescence imaging

    Planar chiral pseudo-isocoumarins by copper catalysed desymmetrisation

    Get PDF
    A new copper catalysed desymmetrisation reaction of bisalkynyl ferrocenecarboxylic acids results in the first asymmetric synthesis of planar chiral pseudo-isocoumarins in up to 64 % enantiomeric excess and up to 99 % yield. The absolute configuration of the chiral heterocycles is proven by chemical correlation and circular dichroism spectroscopy, opening the way for the rational extension of this method to produce bioactive isocoumarin-fused ferrocene derivatives

    Trypanocidal and leishmanicidal activity of six limonoids

    Get PDF
    Six limonoids [kotschyienone A and B (1, 2), 7-deacetylgedunin (3), 7-deacetyl-7-oxogedunin (4), andirobin (5) and methyl angolensate (6)] were investigated for their trypanocidal and leishmanicidal activities using bloodstream forms of Trypanosoma brucei and promastigotes of Leishmania major. Whereas all compounds showed anti-trypanosomal activity, only compounds 1–4 displayed anti-leishmanial activity. The 50% growth inhibition (GI 50) values for the trypanocidal and leishmanicidal activity of the compounds ranged between 2.5 and 14.9 ΌM. Kotschyienone A (1) was found to be the most active compound with a minimal inhibition concentration (MIC) value of 10 ΌM and GI 50 values between 2.5 and 2.9 ΌM. Only compounds 1 and 3 showed moderate cytotoxicity against HL-60 cells with MIC and GI 50 values of 100 ΌM and 31.5–46.2 ΌM, respectively. Compound 1 was also found to show activity against intracellular amastigotes of L. major with a GI 50 value of 1.5 ΌM. The results suggest that limonoids have potential as drug candidates for the development of new treatments against trypanosomiasis and leishmaniasis
    • 

    corecore