10 research outputs found

    A high-resolution image time series of the Gorner Glacier – Swiss Alps – derived from repeated unmanned aerial vehicle surveys

    Get PDF
    Modern drone technology provides an efficient means to monitor the response of alpine glaciers to climate warming. Here we present a new topographic dataset based on images collected during 10 UAV surveys of the Gorner Glacier glacial system (Switzerland) carried out approximately every 2 weeks throughout the summer of 2017. The final products, available at https://doi.org/10.5281/zenodo.2630456 (Benoit et al., 2018), consist of a series of 10&thinsp;cm resolution orthoimages, digital elevation models of the glacier surface, and maps of ice surface displacement. Used on its own, this dataset allows mapping of the glacier and monitoring surface velocities over the summer at a very high spatial resolution. Coupled with a classification or feature detection algorithm, it enables the extraction of structures such as surface drainage networks, debris, or snow cover. The approach we present can be used in the future to gain insights into ice flow dynamics.</p

    Deriving 3d point clouds from terrestrial photographs comparison of different sensors and software

    Get PDF
    Terrestrial photogrammetry nowadays offers a reasonably cheap, intuitive and effective approach to 3D-modelling. However, the important choice, which sensor and which software to use is not straight forward and needs consideration as the choice will have effects on the resulting 3D point cloud and its derivatives. <br><br> We compare five different sensors as well as four different state-of-the-art software packages for a single application, the modelling of a vegetated rock face. The five sensors represent different resolutions, sensor sizes and price segments of the cameras. The software packages used are: (1) Agisoft PhotoScan Pro (1.16), (2) Pix4D (2.0.89), (3) a combination of Visual SFM (V0.5.22) and SURE (1.2.0.286), and (4) MicMac (1.0). We took photos of a vegetated rock face from identical positions with all sensors. Then we compared the results of the different software packages regarding the ease of the workflow, visual appeal, similarity and quality of the point cloud. <br><br> While PhotoScan and Pix4D offer the user-friendliest workflows, they are also “black-box” programmes giving only little insight into their processing. Unsatisfying results may only be changed by modifying settings within a module. The combined workflow of Visual SFM, SURE and CloudCompare is just as simple but requires more user interaction. MicMac turned out to be the most challenging software as it is less user-friendly. However, MicMac offers the most possibilities to influence the processing workflow. The resulting point-clouds of PhotoScan and MicMac are the most appealing

    Global and Planetary Change / Glacial lakes in Austria : distribution and formation since the Little Ice Age

    Get PDF
    Glacial lakes constitute a substantial part of the legacy of vanishing mountain glaciation and act as water storage, sediment traps and sources of both natural hazards and leisure activities. For these reasons, they receive growing attention by scientists and society. However, while the evolution of glacial lakes has been studied intensively over timescales tied to remote sensing-based approaches, the longer-term perspective has been omitted due a lack of suitable data sources. We mapped and analyzed the spatial distribution of glacial lakes in the Austrian Alps. We trace the development of number and area of glacial lakes in the Austrian Alps since the Little Ice Age (LIA) based on a unique combination of a lake inventory and an extensive record of glacier retreat. We find that bedrock-dammed lakes are the dominant lake type in the inventory. Bedrock- and moraine-dammed lakes populate the highest landscape domains located in cirques and hanging valleys. We observe lakes embedded in glacial deposits at lower locations on average below 2000ma.s.l. In general, the distribution of glacial lakes over elevation reflects glacier erosional and depositional dynamics rather than the distribution of total area. The rate of formation of new glacial lakes (number, area) has continuously accelerated over time with present rates showing an eight-fold increase since LIA. At the same time the total glacier area decreased by two-thirds. This development coincides with a long-term trend of rising temperatures and a significant stepping up of this trend within the last 20years in the Austrian Alps.(VLID)250096

    Journal of Geophysical Research: Earth Surface / The topography of a continental indenter : the interplay between crustal deformation, erosion, and base level changes in the eastern Southern Alps

    Get PDF
    The topography of the eastern Southern Alps (ESA) reflects indenter tectonics causing crustal shortening, surface uplift, and erosional response. Fluvial drainages were perturbed by Pleistocene glaciations that locally excavated alpine valleys. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA-EA drainage divide have not been identified. We demonstrate the expected topographic effects of each mechanism in a one-dimensional model and compare them with observed channel metrics. We find that the normalized steepness index increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and amplitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease toward the east. Changes in slope of -transformed channel profiles coincide spatially with the Valsugana-Fella fault linking crustal stacking and uplift induced by indenter tectonics with topographic evolution. Gradients in across the ESA-EA drainage divide imply an ongoing, north directed shift of the Danube-ESA watershed that is most likely driven by a base level rise in the northern Molasse basin. We conclude that the regional uplift pattern controls the geometry of ESA-EA channels, while base level changes in the far field control the overall architecture of the orogen by drainage divide migration.(VLID)222030

    A high-resolution image time series of the Gorner Glacier Swiss Alps derived from repeated unmanned aerial vehicle surveys

    Get PDF
    Modern drone technology provides an efficient means to monitor the response of alpine glaciers to climate warming. Here we present a new topographic dataset based on images collected during 10 UAV surveys of the Gorner Glacier glacial system (Switzerland) carried out approximately every 2 weeks throughout the summer of 2017. The final products, available at https://doi.org/10.5281/zenodo.2630456 (Benoit et al., 2018), consist of a series of 10cm resolution orthoimages, digital elevation models of the glacier surface, and maps of ice surface displacement. Used on its own, this dataset allows mapping of the glacier and monitoring surface velocities over the summer at a very high spatial resolution. Coupled with a classification or feature detection algorithm, it enables the extraction of structures such as surface drainage networks, debris, or snow cover. The approach we present can be used in the future to gain insights into ice flow dynamics.(VLID)359801

    The influence of erosion and vegetation on soil production and chemical weathering rates in the Southern Alps, New Zealand

    No full text
    Chemical weathering influences many aspects of the Earth system, including biogeochemical cycling, climate, and ecosystem function. Physical erosion influences chemical weathering rates by setting the supply of fresh minerals to the critical zone. Vegetation also influences chemical weathering rates, both by physical processes that expose mineral surfaces and via production of acids that contribute to mineral dissolution. However, the role of vegetation in setting surface process rates in different landscapes is unclear. Here we use ¹⁰Be and geochemical mass balance to quantify soil production, physical erosion, and chemical weathering rates in a landscape where a migrating drainage divide separates catchments with an order-of magnitude contrast in erosion rates and where vegetation spans temperate rainforest, tussock grassland, and unvegetated alpine ecosystems in the western Southern Alps of New Zealand. Soil production, physical erosion, and chemical weathering rates are significantly higher on the rapidly eroding versus the slowly eroding side of the drainage divide. However, chemical weathering intensity does not vary significantly across the divide or as a function of vegetation type. Soil production rates are correlated with ridgetop curvature, and ridgetops are more convex on the rapidly eroding side of the divide, where soil mineral residence times are lowest. Hence our findings suggest fluvially-driven erosion rates control soil production and soil chemical weathering rates by influencing the relationship between hillslope topography and mineral residence times. In the western Southern Alps, soil production and chemical weathering rates are more strongly mediated by physical rock breakdown driven by landscape response to tectonics, than by vegetation
    corecore