258 research outputs found
Management of KPC-Producing Klebsiella pneumoniae Infections
Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-KP) has become one of the most important contemporary pathogens, especially in endemic areas
Post-operative Aspergillus mediastinitis in a man who was immunocompetent: a case report
<p>Abstract</p> <p>Introduction</p> <p><it>Aspergillus </it>spp. infections mainly affect patients who are immunocompromised, and are extremely rare in immunocompetent individuals.</p> <p>Case presentation</p> <p><it>Aspergillus </it>post-operative mediastinitis is considered to be a devastating infection, usually affecting patients undergoing cardiothoracic surgery with specific predisposing factors. We describe the case of an immunocompetent 68-year-old Caucasian man with severe chronic thromboembolic pulmonary hypertension, who underwent pulmonary thromboendarterectomy and developed post-operative mediastinitis due to <it>Aspergillus flavus</it>. The environmental control did not reveal the source of <it>A. flavus </it>infection and, despite combined antifungal therapy, our patient died as a result of septic shock and multiple organ failure.</p> <p>Conclusion</p> <p><it>Aspergillus </it>mediastinitis mainly affects patients after cardiosurgery operations with predisposing factors, and it is unusual in patients who are immunocompetent. The identification of the <it>Aspergillus </it>spp. source is often difficult, and there are no guidelines for the administration of pre-emptive therapy in this population of at-risk patients.</p
Risk factors for nasopharyngeal carriage of drug-resistant Streptococcus pneumoniae: data from a nation-wide surveillance study in Greece
<p>Abstract</p> <p>Background</p> <p>A nation-wide surveillance study was conducted in Greece in order to provide a representative depiction of pneumococcal carriage in the pre-vaccination era and to evaluate potential risk factors for carriage of resistant strains in healthy preschool children attending daycare centers.</p> <p>Methods</p> <p>A study group was organized with the responsibility to collect nasopharyngeal samples from children. Questionnaires provided demographic data, data on antibiotic consumption, family and household data, and medical history data. Pneumococcal isolates were tested for their susceptibility to various antimicrobial agents and resistant strains were serotyped.</p> <p>Results</p> <p>Between February and May 2004, from a total population of 2536 healthy children, a yield of 746 pneumococci was isolated (carriage rate 29.41%). Resistance rates differed among geographic regions. Recent antibiotic use in the last month was strongly associated with the isolation of resistant pneumococci to a single or multiple antibiotics. Serotypes 19F, 14, 9V, 23F and 6B formed 70.6% of the total number of resistant strains serotyped.</p> <p>Conclusion</p> <p>Recent antibiotic use is a significant risk factor for the colonization of otherwise healthy children's nasopharynx by resistant strains of <it>S pneumoniae</it>. The heptavalent pneumococcal conjugate vaccine could provide coverage for a significant proportion of resistant strains in the Greek community. A combined strategy of vaccination and prudent antibiotic use could provide a means for combating pneumococcal resistance.</p
Tigecycline use in serious nosocomial infections: a drug use evaluation
<p>Abstract</p> <p>Background</p> <p>Tigecycline is a novel antibiotic with activity against multidrug resistant bacteria. The aim of this study was to assess the efficacy of tigecycline use in serious hospital-acquired infections (HAI)</p> <p>Case presentation</p> <p>Prospective observational study of tigecycline use was conducted in a 1500 beds university hospital. From January 1, 2007 and January 31, 2010, 207 pts were treated with tigecycline for the following indications: intra-abdominal, pneumonia, bloodstream and complicated skin and soft tissue infections and febrile neutropenia. The therapy was targeted in 130/207 (63%) and empirical in 77/207 (37%) patients. All bacteria treated were susceptible to tigecycline. Median duration of tigecycline therapy was 13 days (range, 6-28). Clinical success was obtained in 151/207 (73%) cases, with the highest success rate recorded in intra-abdominal infections [81/99 (82%)]. Microbiological success was achieved in 100/129 (78%) treated patients. Adverse clinical events were seen in 16/207 patients (7.7%):</p> <p>Conclusions</p> <p>Considering the lack of data on tigecycline for critically ill patients, we think that the reported data of our clinical experience despite some limitations can be useful for clinicians.</p
Dexamethasone attenuates interferon-related cytokine hyperresponsiveness in COVID-19 patients
Background: Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated.Objective: We combined functional immunological assays and an omics-based approach to investigate the in vitro and in vivo effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients.Methods: Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward between February and July, 2021. Whole blood transcriptomic and targeted plasma proteomic analyses were performed before and after starting dexamethasone treatment. PBMCs were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and transcriptome and cytokine responses were assessed.Results: Dexamethasone efficiently inhibited SARS-CoV-2-induced in vitro expression of chemokines and cytokines in PBMCs at the transcriptional and protein level. Dexamethasone treatment in COVID-19 patients resulted in down-regulation of genes related to type I and II interferon (IFN) signaling in whole blood immune cells. In addition, dexamethasone attenuated circulating concentrations of secreted interferon-stimulating gene 15 (ISG15) and pro-inflammatory cytokines and chemokines correlating with disease severity and lethal outcomes, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8), and C-X-C motif chemokine ligand 10 (CXCL10). In PBMCs from COVID-19 patients that were stimulated ex vivo with multiple pathogens or Toll-like receptor (TLR) ligands, dexamethasone efficiently inhibited cytokine responses.Conclusion: We describe the anti-inflammatory impact of dexamethasone on the pathways contributing to cytokine hyperresponsiveness observed in severe manifestations of COVID-19, including type I/II IFN signaling. Dexamethasone could have adverse effects in COVID-19 patients with mild symptoms by inhibiting IFN responses in early stages of the disease, whereas it exhibits beneficial effects in patients with severe clinical phenotypes by efficiently diminishing cytokine hyperresponsiveness.</p
- …