491 research outputs found

    Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body

    Get PDF
    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant’s experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups

    Dynamics of Nanometer-Scale Foil Targets Irradiated with Relativistically Intense Laser Pulses

    Full text link
    In this letter we report on an experimental study of high harmonic radiation generated in nanometer-scale foil targets irradiated under normal incidence. The experiments constitute the first unambiguous observation of odd-numbered relativistic harmonics generated by the v×B\vec{v}\times\vec{B} component of the Lorentz force verifying a long predicted property of solid target harmonics. Simultaneously the observed harmonic spectra allow in-situ extraction of the target density in an experimental scenario which is of utmost interest for applications such as ion acceleration by the radiation pressure of an ultraintense laser.Comment: 5 pages, 4 figure

    Using the third state of matter: high harmonic generation from liquid targets

    Get PDF
    High harmonic generation on solid and gaseous targets has been proven to be a powerful platform for the generation of attosecond pulses. Here we demonstrate a novel technique for the XUV generation on a smooth liquid surface target in vacuum, which circumvents the problem of low repetition rate and limited shot numbers associated with solid targets, while it maintains some of its merits. We employed atomically smooth, continuous liquid jets of water, aqueous salt solutions and ethanol that allow uninterrupted high harmonic generation due to the coherent wake emission mechanism for over 8 h. It has been found that the mechanism of plasma generation is very similar to that for smooth solid target surfaces. The vapor pressure around the liquid target in our setup has been found to be very low such that the presence of the gas phase around the liquid jet could be neglected

    Intentional Binding Is Driven by the Mere Presence of an Action and Not by Motor Prediction

    Get PDF
    Intentional binding refers to the fact that when a voluntary action produces a sensory outcome, action and outcome are perceived as being closer together in time. This phenomenon is often attributed, at least partially, to predictive motor mechanisms. However, previous studies failed to unequivocally attribute intentional binding to these mechanisms, since the contrasts that have been used to demonstrate intentional binding covered not only one but two processes: temporal control and motor identity prediction. In the present study we aimed to isolate the respective role of each of these processes in the emergence of intentional binding of action-effects. The results show that motor identity prediction does not modulate intentional binding of action-effects. Our findings cast doubts on the assumption that intentional binding of action effects is linked to internal forward predictive process

    First Person Experience of Body Transfer in Virtual Reality

    Get PDF
    Background: Altering the normal association between touch and its visual correlate can result in the illusory perception of a fake limb as part of our own body. Thus, when touch is seen to be applied to a rubber hand while felt synchronously on the corresponding hidden real hand, an illusion of ownership of the rubber hand usually occurs. The illusion has also been demonstrated using visuomotor correlation between the movements of the hidden real hand and the seen fake hand. This type of paradigm has been used with respect to the whole body generating out-of-the-body and body substitution illusions. However, such studies have only ever manipulated a single factor and although they used a form of virtual reality have not exploited the power of immersive virtual reality (IVR) to produce radical transformations in body ownership.Principal Findings: Here we show that a first person perspective of a life-sized virtual human female body that appears to substitute the male subjects' own bodies was sufficient to generate a body transfer illusion. This was demonstrated subjectively by questionnaire and physiologically through heart-rate deceleration in response to a threat to the virtual body. This finding is in contrast to earlier experimental studies that assume visuotactile synchrony to be the critical contributory factor in ownership illusions. Our finding was possible because IVR allowed us to use a novel experimental design for this type of problem with three independent binary factors: (i) perspective position (first or third), (ii) synchronous or asynchronous mirror reflections and (iii) synchrony or asynchrony between felt and seen touch.Conclusions: The results support the notion that bottom-up perceptual mechanisms can temporarily override top down knowledge resulting in a radical illusion of transfer of body ownership. The research also illustrates immersive virtual reality as a powerful tool in the study of body representation and experience, since it supports experimental manipulations that would otherwise be infeasible, with the technology being mature enough to represent human bodies and their motion

    Potential of the Julia programming language for high energy physics computing

    Full text link
    Research in high energy physics (HEP) requires huge amounts of computing and storage, putting strong constraints on the code speed and resource usage. To meet these requirements, a compiled high-performance language is typically used; while for physicists, who focus on the application when developing the code, better research productivity pleads for a high-level programming language. A popular approach consists of combining Python, used for the high-level interface, and C++, used for the computing intensive part of the code. A more convenient and efficient approach would be to use a language that provides both high-level programming and high-performance. The Julia programming language, developed at MIT especially to allow the use of a single language in research activities, has followed this path. In this paper the applicability of using the Julia language for HEP research is explored, covering the different aspects that are important for HEP code development: runtime performance, handling of large projects, interface with legacy code, distributed computing, training, and ease of programming. The study shows that the HEP community would benefit from a large scale adoption of this programming language. The HEP-specific foundation libraries that would need to be consolidated are identifiedComment: 32 pages, 5 figures, 4 table
    corecore