97 research outputs found

    Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications

    Get PDF
    We analyze the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolor orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modeling of the energy and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channeling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations

    Zircon to monazite phase transition in CeVO4

    Full text link
    X-ray diffraction and Raman-scattering measurements on cerium vanadate have been performed up to 12 and 16 GPa, respectively. Experiments reveal that at 5.3 GPa the onset of a pressure-induced irreversible phase transition from the zircon to the monazite structure. Beyond this pressure, diffraction peaks and Raman-active modes of the monazite phase are measured. The zircon to monazite transition in CeVO4 is distinctive among the other rare-earth orthovanadates. We also observed softening of external translational Eg and internal B2g bending modes. We attributed it to mechanical instabilities of zircon phase against the pressure-induced distortion. We additionally report lattice-dynamical and total-energy calculations which are in agreement with the experimental results. Finally, the effect of non-hydrostatic stresses on the structural sequence is studied and the equations of state of different phases are reported.Comment: 45 pages, 8 figures, 8 table

    Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings

    Get PDF
    High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.

    Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications

    Get PDF
    We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocationsThis work was carried out with the support of EPSRC Grant Nos. EP/J015792/1 and EP/M015181/1 and through support of a Carnegie Trust Research Incentive Grant No. 70483

    Compensation-dependent in-plane magnetization reversal processes in Ga1-xMnxP1-ySy

    Full text link
    We report the effect of dilute alloying of the anion sublattice with S on the in-plane uniaxial magnetic anisotropy and magnetization reversal process in Ga1-xMnxP as measured by both ferromagnetic resonance (FMR) and superconducting quantum interference device (SQUID) magnetometry. At T=5K, raising the S concentration increases the uniaxial magnetic anisotropy between in-plane directions while decreasing the magnitude of the (negative) cubic anisotropy field. Simulation of the SQUID magnetometry indicates that the energy required for the nucleation and growth of domain walls decreases with increasing y. These combined effects have a marked influence on the shape of the field-dependent magnetization curves; while the direction remains the easy axis in the plane of the film, the field dependence of the magnetization develops double hysteresis loops in the [011] direction as the S concentration increases similar to those observed for perpendicular magnetization reversal in lightly doped Ga1-xMnxAs. The incidence of double hysteresis loops is explained with a simple model whereby magnetization reversal occurs by a combination of coherent spin rotation and noncoherent spin switching, which is consistent with both FMR and magnetometry experiments. The evolution of magnetic properties with S concentration is attributed to compensation of Mn acceptors by S donors, which results in a lowering of the concentration of holes that mediate ferromagnetism.Comment: 37 pages, 9 figures, 3 table

    High-pressure study of the behavior of mineral barite by X-ray diffraction

    Get PDF
    In this paper, we report the angle-dispersive x-ray diffraction data of barite, BaSO 4, measured in a diamond-anvil cell up to a pressure of 48 GPa, using three different fluid pressure-transmitting media (methanol-ethanol mixture, silicone oil, and He). Our results show that BaSO 4 exhibits a phase transition at pressures that range from 15 to 27 GPa, depending on the pressure media used. This indicates that nonhydrostatic stresses have a crucial role in the high-pressure behavior of this compound. The new high-pressure (HP) phase has been solved and refined from powder data, having an orthorhombic P2 12 12 1 structure. The pressure dependence of the structural parameters of both room- and HP phases of BaSO 4 is also discussed in light of our theoretical first-principles total-energy calculations. Finally, a comparison between the different equations of state obtained in our experiments is reported. © 2011 American Physical Society.Financial support from the Spanish Consolider Ingenio 2010 Program (Project No. CDS2007-00045) is acknowledged. The work was also supported by Spanish MICCIN under Projects No. CTQ2009-14596-C02-01 and No. MAT2010-21270-C04-01 as well as from Comunidad de Madrid and European Social Fund: S2009/PPQ-1551 4161893 (QUIMAPRES). The ESRF is acknowledged for provision of beamtime.Santamaría-Pérez, D.; Gracia, L.; Garbarino, G.; Beltrán, A.; Chuliá-Jordán, R.; Gomis Hilario, O.; Errandonea, D.... (2011). High-pressure study of the behavior of mineral barite by X-ray diffraction. Physical Review B. 84:54102-1-54102-8. https://doi.org/10.1103/PhysRevB.84.054102S54102-154102-884RUBIN, A. E. (1997). Mineralogy of meteorite groups. Meteoritics & Planetary Science, 32(2), 231-247. doi:10.1111/j.1945-5100.1997.tb01262.xVegas, A. (2000). Cations in Inorganic Solids. Crystallography Reviews, 7(3), 189-283. doi:10.1080/08893110008044245Santamaría-Pérez, D., & Vegas, A. (2003). The Zintl–Klemm concept applied to cations in oxides. I. The structures of ternary aluminates. Acta Crystallographica Section B Structural Science, 59(3), 305-323. doi:10.1107/s0108768103005615Vegas, A., & Jansen, M. (2001). Structural relationships between cations and alloys; an equivalence between oxidation and pressure. Acta Crystallographica Section B Structural Science, 58(1), 38-51. doi:10.1107/s0108768101019310Lee, P.-L., Huang, E., & Yu, S.-C. (2001). Phase diagram and equations of state of BaSO4. High Pressure Research, 21(2), 67-77. doi:10.1080/08957950108201005Lee, P.-L., Huang, E., & Yu, S.-C. (2003). High-pressure Raman and X-ray studies of barite, BaSO4. High Pressure Research, 23(4), 439-450. doi:10.1080/0895795031000115439Crichton, W. A., Merlini, M., Hanfland, M., & Muller, H. (2011). The crystal structure of barite, BaSO4, at high pressure. American Mineralogist, 96(2-3), 364-367. doi:10.2138/am.2011.3656Errandonea, D., Santamaria-Perez, D., Bondarenko, T., & Khyzhun, O. (2010). New high-pressure phase of HfTiO4 and ZrTiO4 ceramics. Materials Research Bulletin, 45(11), 1732-1735. doi:10.1016/j.materresbull.2010.06.061López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., … Raptis, C. (2010). Theoretical and experimental study of the structural stability ofTbPO4at high pressures. Physical Review B, 81(14). doi:10.1103/physrevb.81.144126Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-iBecke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785Gracia, L., Beltrán, A., & Andrés, J. (2007). Characterization of the High-Pressure Structures and Phase Transformations in SnO2. A Density Functional Theory Study. The Journal of Physical Chemistry B, 111(23), 6479-6485. doi:10.1021/jp067443vGracia, L., Beltrán, A., & Errandonea, D. (2009). Characterization of theTiSiO4structure and its pressure-induced phase transformations: Density functional theory study. Physical Review B, 80(9). doi:10.1103/physrevb.80.094105Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57-72. doi:10.1016/j.comphy.2003.12.001Errandonea, D., Santamaría-Perez, D., Vegas, A., Nuss, J., Jansen, M., Rodríguez-Hernandez, P., & Muñoz, A. (2008). Structural stability ofFe5Si3andNi2Sistudied by high-pressure x-ray diffraction andab initiototal-energy calculations. Physical Review B, 77(9). doi:10.1103/physrevb.77.094113Santamarı́a-Pérez, D., Nuss, J., Haines, J., Jansen, M., & Vegas, A. (2004). Iron silicides and their corresponding oxides: a high-pressure study of Fe5Si3. Solid State Sciences, 6(7), 673-678. doi:10.1016/j.solidstatesciences.2004.03.027Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030Klotz, S., Paumier, L., Le March, G., & Munsch, P. (2009). The effect of temperature on the hydrostatic limit of 4:1 methanol–ethanol under pressure. High Pressure Research, 29(4), 649-652. doi:10.1080/08957950903418194Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113Crichton, W. A., Parise, J. B., Antao, S. M., & Grzechnik, A. (2005). Evidence for monazite-, barite-, and AgMnO4(distorted barite)-type structures of CaSO4at high pressure and temperature. American Mineralogist, 90(1), 22-27. doi:10.2138/am.2005.1654Huang, T., Shieh, S. R., Akhmetov, A., Liu, X., Lin, C.-M., & Lee, J.-S. (2010). Pressure-induced phase transition inBaCrO4. Physical Review B, 81(21). doi:10.1103/physrevb.81.214117Zhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114Panchal, V., Garg, N., & Sharma, S. M. (2006). Raman and x-ray diffraction investigations on BaMoO4under high pressures. Journal of Physics: Condensed Matter, 18(16), 3917-3929. doi:10.1088/0953-8984/18/16/00

    Structural Evolution of CO2-Filled Pure Silica LTA Zeolite under High-Pressure High-Temperature Conditions

    Full text link
    [EN] The crystal structure of CO2-filled pure-SiO2 LTA zeolite has been studied at high pressures and temperatures using synchrotron-based X-ray powder diffraction. Its structure consists of 13 CO2 guest molecules, 12 of them accommodated in the large alpha-cages and one in the beta-cages, giving a SiO2/CO2 stoichiometric ratio smaller than 2. The structure remains stable under pressure up to 20 GPa with a slight pressure-dependent rhombohedral distortion, indicating that pressure-induced amorphization is prevented by the insertion of guest species in this open framework. The ambient temperature lattice compressibility has been determined. In situ high-pressure resistive-heating experiments up to 750 K allow us to estimate the thermal expansivity at P approximate to 5 GPa. Our data confirm that the insertion of CO2 reverses the negative thermal expansion of the empty zeolite structure. No evidence of any chemical reaction was observed. The possibility of synthesizing a silicon carbonate at high temperatures and higher pressures is discussed in terms of the evolution of C-O and Si-O distances between molecular and framework atoms.The authors thank the financial support of the Spanish Ministerio de Economia y Competitividad (MINECO), the Spanish Research Agency (AEI), and the European Fund for Regional Development (FEDER) under Grant Nos. MAT2016-75586-C4-1-P, MAT2015-71842-P, Severo Ochoa SEV-2012-0267, and No.MAT2015-71070-REDC (MALTA Consolider). D.S.-P. and J.R.-F. acknowledge MINECO for a Ramon y Cajal and a Juan de la Cierva contract, respectively. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-1128799) and Department of Energy- GeoSciences (DE-FG02-94ER14466). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758. CO2 gas was also loaded at Diamond Light Source. Authors thank synchrotron ALBA-CELLS for beamtime allocation at MSPD line. British Crown Owned Copyright 2017/AWE. Published with permission of the Controller of Her Britannic Majesty's Stationery Office.Santamaria-Perez, D.; Marqueño, T.; Macleod, S.; Ruiz-Fuertes, J.; Daisenberger, D.; Chulia-Jordan, R.; Errandonea, D.... (2017). Structural Evolution of CO2-Filled Pure Silica LTA Zeolite under High-Pressure High-Temperature Conditions. Chemistry of Materials. 29(10):4502-4510. https://doi.org/10.1021/acs.chemmater.7b01158S45024510291

    Redox-freezing and nucleation of diamond via magnetite formation in the Earth’s mantle

    Get PDF
    Diamonds and their inclusions are unique probes into the deep Earth, tracking the deep carbon cycle to >800 km. Understanding the mechanisms of carbon mobilization and freezing is a prerequisite for quantifying the fluxes of carbon in the deep Earth. Here we show direct evidence for the formation of diamond by redox reactions involving FeNi sulfides. Transmission Kikuchi Diffraction identifies an arrested redox reaction from pyrrhotite to magnetite included in diamond. The magnetite corona shows coherent epitaxy with relict pyrrhotite and diamond, indicating that diamond nucleated on magnetite. Furthermore, structures inherited from h-Fe3O4 define a phase transformation at depths of 320–330 km, the base of the Kaapvaal lithosphere. The oxidation of pyrrhotite to magnetite is an important trigger of diamond precipitation in the upper mantle, explaining the presence of these phases in diamonds
    corecore