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Redox-freezing and nucleation of diamond
via magnetite formation in the Earth’s mantle
Dorrit E. Jacob1, Sandra Piazolo1, Anja Schreiber2 & Patrick Trimby3

Diamonds and their inclusions are unique probes into the deep Earth, tracking the deep

carbon cycle to 4800 km. Understanding the mechanisms of carbon mobilization and

freezing is a prerequisite for quantifying the fluxes of carbon in the deep Earth. Here we show

direct evidence for the formation of diamond by redox reactions involving FeNi sulfides.

Transmission Kikuchi Diffraction identifies an arrested redox reaction from pyrrhotite to

magnetite included in diamond. The magnetite corona shows coherent epitaxy with relict

pyrrhotite and diamond, indicating that diamond nucleated on magnetite. Furthermore,

structures inherited from h-Fe3O4 define a phase transformation at depths of 320–330 km,

the base of the Kaapvaal lithosphere. The oxidation of pyrrhotite to magnetite is an important

trigger of diamond precipitation in the upper mantle, explaining the presence of these phases

in diamonds.
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T
he Earth’s mantle contains 200mg g� 1 sulfur on average1.
Despite this element’s rarity, iron-nickel (FeNi)
sulfides form by far the most abundant inclusions

in natural diamond2,3. This extreme overabundance in
comparison to the mantle xenolith record is enigmatic,
particularly because the mobility of low-volume sulfide melts in
the mantle is limited4.

An increasing body of evidence indicates that the majority of
diamonds form from mobile carbon-bearing fluids and melts in
the Earth’s mantle5. Clues for diamond formation mechanisms
are found in minerals and fluids included in various diamond
species, which provide different perspectives of the same process.
Fast-growing fibrous diamonds directly sample mantle
metasomatic fluids in abundant micro-inclusions6. In contrast,
rapidly formed polycrystalline diamond aggregates encase a range
of solid products representative of their formation process7.
Combined evidence from these rapidly formed diamond species
emphasizes the importance of redox gradients as a controlling
parameter for the immobilization of carbon as diamond in the
mantle6,8,9.

The most effective redox couple in the Earth’s mantle consists
of carbon and iron, which controls the onset of carbonate melting
with depth by reduction of Fe3þ and oxidation of graphite or
diamond9. Conversely, oxidation of Fe2þ may lead to freezing of
mobile carbon species in the form of graphite or diamond. Fe2þ

in FeNi sulfides in the Earth’s mantle thus present a reservoir
with considerable oxidation potential. While rare in the mantle
overall1, billions of years of subduction10,11 have created patches
that are highly enriched in crustal material that contain abundant
sulfides, carbon and volatiles and provide a very reactive
environment in the Earth’s mantle.

In this work we investigate the microstructure and composition
of FeNi-sulfide inclusions in a polycrystalline diamond aggregate
that display a nanogranular magnetite reaction corona. This
assemblage demonstrates that diamond formed and nucleated by
a redox reaction involving the diamond-forming fluid and the
FeNi sulfide that formed magnetite and diamond. Epitaxy
between sulfide, the magnetite corona and diamond host shows
that diamond nucleated on the magnetite, establishing syngeni-
city between the phases, and demonstrating magnetite formation
at the expense of the FeNi sulfide to diamond formation. Within
the magnetite corona, characteristic and systematic orientation
relationships between the magnetite grains are indicative of a
phase transformation from a high-pressure h-Fe3O4 phase, which
is stable only above 10 GPa, placing the origin of this assemblage
unequivocally at the base of the subcratonic lithosphere. This
study provides direct evidence for the involvement of FeNi
sulfides in diamond formation and emphasizes the importance of
locally sulfide-enriched areas in the Earth’s mantle as diamond
factories.

Results
Petrography of the specimen. The Orapa diamond mine in
Botswana is characterized by a particularly dominant eclogitic
subduction component in its diamond inclusion suite12. An
electron-transparent foil of ca. 150 nm thickness was cut from a
polycrystalline diamond aggregate containing eclogite suite
inclusions8 from this locality. The foil consists of a single
undeformed diamond crystal encasing two angular pyrrhotite
inclusions both partially rimmed by a nanocrystalline corona of
magnetite (Fe3O4) and connected by a thin pyrrhotite veinlet
(Fig. 1). Microstructure and crystallography of the minerals in
this foil were studied using Transmission Kikuchi Diffraction
(TKD)13, a novel technique for diffraction analysis and
automated orientation mapping in the Scanning Electron

Microscope (SEM) that achieves ca. 5 nm spatial resolution.
Introduced from material sciences, this is the first application to a
natural sample.

Sulfide microstructures. While TKD is not a very accurate
technique for the determination of d-spacings, the Kikuchi
patterns of both pyrrhotite grains match closest with a hexagonal
high-temperature Fe9S10 structure with a¼ 0.343 and c¼ 0.579
nm. Crystal-plastic deformation is indicated for each by
systematic crystallographic orientation changes of up to 5� over
1 mm with gradual lattice bending and distinct subgrain bound-
aries (Fig. 2b,c) with characteristic orientation dispersion
patterns14 (Fig. 3a,b). In contrast, the host diamond grain is
completely undeformed apart from a minor brittle deformation
event indicated by the pyrrhotite veinlet (Fig. 1). Brittle
deformation occurs at shallower depths than those of plastic
deformation; thus this event occurred at a very late stage, possibly
upon eruption of the Orapa kimberlite, and is not related to
diamond formation.

Plastic deformation microstructures in sulfides very similar to
the ones observed here are produced at the onset of dynamic
recrystallization at temperatures of B50% below the melting
point of the Fe-S system15 (4500–550 �C and 0.3 GPa (ref. 16).
No sulfide deformation experiments are available under upper
mantle conditions, but taking into account the pressure effect on
the melting curve of pyrrhotite (ca. þ 6.2 �C per 0.1 GPa;
(ref. 17) extrapolation of the temperatures at surface conditions
estimated above indicate ca. 800 �C for pressures of the diamond
stability field. These temperatures are well below those required
for plastic deformation of diamond (Z1,200 �C and 4 GPa
(ref. 18). Therefore, the plastic deformation features shown
by the sulfides and their absence in the diamond host indicate
that the sulfides were deformed before being included into the
diamond. Post inclusion annealing within the diamond is
unlikely, as this would have affected the diamond and its
inclusions equally. This demonstrates that the sulfides are
protogenetic and experienced ductile deformation before
encapsulation by the diamond.

Late-stage chalcopyrite exsolutions. Discrete chalcopyrite grains
(CuFeS2, Fig. 2) located along the sulfide subgrain boundaries and
Cu-enrichment observed along the outer rims of the pyrrhotite
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Figure 1 | Overview of the pyrrhotites included in diamond. TEM high-

angle annular dark field (HAADF) image of the diamond foil showing two

pyrrhotite inclusions connected by a pyrrhotite veinlet. The foil is covered

by a protective platinum strip and displays some gallium residue from FIB

milling. Scale bar, 2mm.
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inclusions (Fig. 3c,d) are late-stage, low-temperature features.
Chalcopyrite commonly exsolves from FeNi sulfides upon cool-
ing19 typically along grain boundaries. Their distribution along
subgrain boundaries and the inclusion rim of the sulfides shows
that both plastic deformation and corona formation in the sulfide
pre-dated Cu exsolution.

Magnetite corona and evidence for epitaxy. Coronae of nano-
crystalline magnetite (Fe3O4) about 200 nm wide (Figs 1 and 2)
surround both pyrrhotites, but magnetite is spatially very
restricted along the rim of inclusion 2 (Fig. 3e,f). Polycrystalline
coronae are typical products of incomplete reactions around relict
grains20 and are characterized by epitaxy, namely, a
crystallographic orientation aligned to that of the overgrown
phase. The larger corona around inclusion 1 shows epitaxy
between all three phases, pyrrhotite, magnetite and diamond,
with the crystallographic o1114 axes of magnetite aligned with
the c-axes of both diamond and pyrrhotite (Fig. 4). The coherent
epitaxy between relict sulfide, the magnetite reaction rim and host
diamond indicates that the magnetite overgrowth formed at the
expense of sulfide, after which diamond nucleated on the surface
of magnetite, eventually encasing the assemblage and terminating
the redox reaction. In contrast, the pyrrhotite of inclusion
2 shows very little magnetite corona formation and the sulfide
does not display an epitactic relationship with the diamond host.
Thus, in contrast to inclusion 1, inclusion 2 was accidentally
entrapped; it was overgrown by the diamond host, but without
providing a nucleation substrate.

Microstructure of the magnetite corona. The foil was carefully
re-thinned by focussed ion beam milling to facilitate more
detailed analysis of the magnetite (Fig. 5a). The thinned mag-
netite corona revealed a distinctive high abundance of twin
boundaries arranged in domains of crystallographic orienta-
tions (Fig. 5b). Each domain consists of pairs of twins

characterized by a 60� rotation around one of the o1114 axes
of magnetite. Pole figures depicting the complete
crystallographic orientation data for the rim (Fig. 6a,b) show
that the distribution is not random, but that several orientation
spaces are left unoccupied. These are rimmed by orientations
delineating a pattern with the appearance of small ‘rings’
and ‘fences’. These features are characteristic for phase trans-
formations indicating a change in crystal structure between
parent and daughter phases. They have been described for
phase transitions in metals21 and in ice22 and result from a
systematic reorientation relationship of parallel directions and
planes in both phases. In Fe3O4 an unquenchable phase
transformation from magnetite to h-Fe3O4 occurs at 10 GPa
(ref. 23) with a near-isobaric phase boundary. In high-pressure
experiments, nanometre-scale twin lamellae in the retrograde
phase along the {311} planes in magnetite are a characteristic
record of this transformation, which causes rotation of the
o1104 direction by 62� with respect to the host crystal
lattice23. While TKD analysis could not resolve the
crystallographic planes of nano-twins in the magnetites, it
provides confirmation in 3D that three of the four o1104 axes
of magnetite coincide (Fig. 6a). This results from a 60�rotation
around the o1114 axis, very similar to the angle reported by
ref. 23. This means that the twinned magnetite grains in the
corona are retrograde products of the phase transformation
from h-Fe3O4 to magnetite. The magnetite-h-Fe3O4 phase
boundary at 10 GPa is thus a minimum pressure estimate for
this sample, which must therefore originate at B320–330 km,
close to the base of the Kaapvaal subcratonic lithosphere 24.
This is the first time that such a deep minimum pressure of
origin for polycrystalline diamond aggregates has been
estimated.

Discussion
Our knowledge about ages and formation of diamond comes
primarily from the minerals it includes and relies on the
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Figure 2 | Pyrrhotite analysis. (a) Forescatter electron image overlain by a phase map highlighting the polycrystalline magnetite corona (blue) and two

chalcopyrite exsolutions (light green) within pyrrhotite. (b) Pyrrhotite inclusion without the magnetite rim (see light green chalcopyrite for orientation),

highlighting the relative change in crystallographic orientation within the pyrrhotite by a change of green hues across the inclusion. The lines (red and blue

across a subgrain boundary, black within grain) indicate profiles for the quantified orientation change of up to 5� as plotted in (c). Scale bar, 0.5 mm.
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prerequisite that these minerals are syngenetic. Epitaxy between
inclusions and diamond hosts is an unambiguous indicator for
syngenicity, but as of yet studies have yielded ambiguous results
for inclusion suites within the same diamonds. For example,
while olivine inclusions in diamond are generally randomly
oriented with respect to the diamond, some olivines within one
diamond host can be iso-oriented, implying that these may be
fragments of a protogenetic larger crystal25. The microstructural
observations in this study show that epitactic relationships do
indeed identify nucleation centres for diamond and thus establish
syngenicity sensu stricto. However, as illustrated by the very
similar sulfide-magnetite assemblage of inclusion 2 separated only
by a few microns from inclusion 1 (Fig. 1), the lack of epitaxy
does not discount syngenicity. It simply shows that these phases

did not serve as nucleation centres, but were accidentally
encapsuled.

Although sulfides are the most common inclusions in diamond
and it has long since been speculated that they may be directly
involved in diamond formation26–28, direct evidence for this has
been lacking. Our key sample preserves the critical mineral
assemblage and microtexture, thus establishing unambiguously
the link between diamond, sulfide and Fe-oxides as partners in
and products of an arrested redox reaction. Sulfides are locally
enriched in the mantle, where subduction processes govern the
flux of sulfur and carbon into the Earth’s interior29. Subducted
compositionally heterogeneous crustal material has been shown
to be common over large depth ranges into the lower mantle in
modern subduction zones30,31. Fossil-subducted crust in the
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Figure 3 | Detailed microstructure of the inclusions. (a) Microstructure of inclusion 1 with subgrain boundaries (sg I, sg II). (b) Pole figures of dispersion

patterns of subgrain boundaries in sulfide are indicative of plastic deformation. The ‘boundary trace analysis’ technique33 was used to determine the

activated slip system, which is consistent with dispersion patterns across subgrain boundaries. (c,d) Element distribution maps for Cu and Fe across the

pyrrhotite show distinctive Cu enrichment, and correlated Fe depletion, where chalcopyrite inclusions were identified and an area of Cu enrichment along

the rim of the pyrrhotite. (e,f) The magnetite on the outside of inclusion 2 is only very small. Scale bar: (a,c,d) 0.5mm; (e,f) 0.2mm.
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subcratonic lithosphere leaves its legacy in the kimberlite xenolith
record5 and may be particularly abundant at the base of cratonic
lithosphere, because the shape of the cratonic roots in the
overriding plate plays an active role in causing permanent
underplating by subducted ocean crust32. These highly reactive
areas contain the ingredients and the strong oxidation gradients
in close spatial vicinity and have served as ‘diamond factories’
throughout the major part of Earth’s history10.

Methods
Specimen. The TEM foil is ca. 15 by 10mm and 0.150–0.200 mm thick, and was cut
from a polycrystalline diamond aggregate from the Orapa Mine (Botswana). It
contains two angular sulfide inclusions connected by a ca. 0.07-mm-wide sulfide
veinlet. The foil was prepared by focused ion beam milling (FIB) in an FEI FIB200
instrument following the methods outlined in ref. 34. After milling, the foil was cut
free, extracted and placed flat on a carbon-coated Cu grid without further carbon
coating. The sulfides were identified as pyrrhotite by their element composition
and their lattice parameters upon selected area electron diffraction in the TEM8,
and TKD analysis revealed best match with the crystal structure of high-
temperature hexagonal pyrrhotite (Fe9S10) with a¼ 0.343 and c¼ 0.579 nm.

Transmission Kikuchi Analysis. Transmission Kikuchi Analysis (TKD) analysis
was performed using a Zeiss Ultra Plus FEG SEM, equipped with an Oxford
Instruments Channel 5 EBSD system and a Nordlys-S EBSD detector at the
Australian Centre for Microscopy and Microanalysis, The University of Sydney,
operated at 1–10 nA and 30 kV at high vacuum. Phase composition was deter-
mined using an Oxford Instruments AZtec EDS system with an X-Max 20 mm2

silicon drift detector. The TEM foil was mounted using custom-made clamps
attached to a standard 70� tilted EBSD sample holder. The SEM stage was tilted
toward the EBSD detector by 20� at a working distance of typically 5 mm from the
pole piece13. After positioning of the SEM stage the EBSD detector including
phosphorous screen and forescatter detectors was fully inserted.

Data collection and reduction. Orientation and element distribution maps were
collected simultaneously by stepping the electron beam across the surface in a
rectangular grid with a step size of 25 nm. Typically 50–100 X-rays were measured
from each point. Diffraction patterns were collected with a resolution of 336� 256
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Figure 4 | Pole figures showing orientation relationships. Circles depict the epitaxy between one o0014 axis of diamond (a), the o00014 axis of

pyrrhotite in inclusion 1 (c) and one of the magnetite o1114 axes (b). Squares denote the epitaxy between magnetite and pyrrhotite in inclusion 1. One of
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Figure 5 | Crystallographic analysis of the magnetite corona. (a)

Forescatter electron image of the re-thinned magnetite corona. Pyrrhotite

was lost during re-thinning. The crystallography of Areas I, II and III was

further analysed. (b) Crystal preferred orientation of magnetite in Areas I
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pixel (4� 4 binning), enabling acquisition speeds of 100 patterns per second.
During data acquisition all patterns were stored and later reanalysed with optimal
conditions for the band detection. The orientation and intensity of 11 Kikuchi
bands were compared with those of up to 49 theoretical bands to calculate the
orientation of each analysis point. After reanalysis of unindexed points 85–95% of
the area could be indexed. Non-indexed areas are dominantly at grain and phase
boundaries, especially in the fine-grained magnetite-rich areas. Two data sets were
collected on the foil: one on the original foil, and a second one after re-thinning of
the magnetite corona by B30 nm using FIB. The major part of sulfide inclusion
1 was lost during the re-thinning process. The second data set yielded a better-
quality data set at higher resolution for the corona with a much smaller percentage
of unindexed areas. Only this data set is used for the interpretation of the magnetite
corona. The authors declare that all other relevant data supporting the findings of
this study are available on request.
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