61 research outputs found

    320g Ionization-Heat Cryogenic Detector for Dark Matter Search in the EDELWEISS Experiment

    Full text link
    The EDELWEISS experiment used in 2001 a 320g heat-and-ionization cryogenic Ge detector operated in a low-background environment in the Laboratoire Souterrain de Modane for direct WIMP detection. This detector presents an increase of more than 4 times the mass of previous detectors. Calibrations of this detector are used to determine its energy resolution and fiducial volume, and to optimize the detector design for the 1kg phase of the EDELWEISS-I experiment. Analysis of the calibrations and characteristics of a first series of 320g-detectors are presented.Comment: 4 pages, 3 figure

    The EDELWEISS Experiment : Status and Outlook

    Get PDF
    The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat and ionisation read- out to identify nuclear recoils induced by elastic collisions with WIMPs from the galactic halo. Results from the operation of 70 g and 320 g Ge detectors in the low-background environment of the Modane Underground Laboratory (LSM) are presented.Comment: International Conference on Dark Matter in Astro and Particle Physics (Dark 2000), Heidelberg, Germany, 10-16 Jul 2000, v3 minor revision

    Dark Matter Search in the Edelweiss Experiment

    Get PDF
    Preliminary results obtained with 320g bolometers with simultaneous ionization and heat measurements are described. After a few weeks of data taking, data accumulated with one of these detectors are beginning to exclude the upper part of the DAMA region. Prospects for the present run and the second stage of the experiment, EDELWEISS-II, using an innovative reversed cryostat allowing data taking with 100 detectors, are briefly described.Comment: IDM 2000, 3rd International Workshop on the Identification of Dark Matter, York (GB), 18-22/09/2000, v2.0 minor modification

    Critical revision of the ZEPLIN-I sensitivity to WIMP interactions

    Full text link
    The ZEPLIN collaboration has recently published its first result presenting a maximum sensitivity of 1.1×1061.1 \times 10^{-6} picobarn for a WIMP mass of \approx 60 GeV. The analysis is based on a discrimination method using the different time distribution of scintillation light generated in electron recoil and nuclear recoil interactions. We show that the methodology followed both for the calibration of the ZEPLIN-I detector response and for the estimation of the discrimination power is not reliable enough to claim any background discrimination at the present stage. The ZEPLIN-I sensitivity appears then to be in the order of 103^{-3} picobarn, three orders of magnitude above the claimed 1.1 106^{-6} picobarn.Comment: 8 pages, 4 figures, minor corrections, two references updated, final version accepted in Physics Letters

    Event categories in the EDELWEISS WIMP search experiment

    Get PDF
    Four categories of events have been identified in the EDELWEISS-I dark matter experiment using germanium cryogenic detectors measuring simultaneously charge and heat signals. These categories of events are interpreted as electron and nuclear interactions occurring in the volume of the detector, and electron and nuclear interactions occurring close to the surface of the detectors(10-20 mu-m of the surface). We discuss the hypothesis that low energy surface nuclear recoils,which seem to have been unnoticed by previous WIMP searches, may provide an interpretation of the anomalous events recorded by the UKDMC and Saclay NaI experiments. The present analysis points to the necessity of taking into account surface nuclear and electron recoil interactions for a reliable estimate of background rejection factors.Comment: 11 pages, submitted to Phys. Lett.

    First Results of the EDELWEISS WIMP Search using a 320 g Heat-and-Ionization Ge Detector

    Full text link
    The EDELWEISS collaboration has performed a direct search for WIMP dark matter using a 320 g heat-and-ionization cryogenic Ge detector operated in a low-background environment in the Laboratoire Souterrain de Modane. No nuclear recoils are observed in the fiducial volume in the 30-200 keV energy range during an effective exposure of 4.53 kg.days. Limits for the cross-section for the spin-independent interaction of WIMPs and nucleons are set in the framework of the Minimal Supersymmetric Standard Model (MSSM). The central value of the signal reported by the experiment DAMA is excluded at 90% CL.Comment: 14 pages, Latex, 4 figures. Submitted to Phys. Lett.

    Background discrimination capabilities of a heat and ionization germanium cryogenic detector

    Get PDF
    The discrimination capabilities of a 70 g heat and ionization Ge bolometer are studied. This first prototype has been used by the EDELWEISS Dark Matter experiment, installed in the Laboratoire Souterrain de Modane, for direct detection of WIMPs. Gamma and neutron calibrations demonstrate that this type of detector is able to reject more than 99.6% of the background while retaining 95% of the signal, provided that the background events distribution is not biased towards the surface of the Ge crystal. However, the 1.17 kg.day of data taken in a relatively important radioactive environment show an extra population slightly overlapping the signal. This background is likely due to interactions of low energy photons or electrons near the surface of the crystal, and is somewhat reduced by applying a higher charge-collecting inverse bias voltage (-6 V instead of -2 V) to the Ge diode. Despite this contamination, more than 98% of the background can be rejected while retaining 50% of the signal. This yields a conservative upper limit of 0.7 event.day^{-1}.kg^{-1}.keV^{-1}_{recoil} at 90% confidence level in the 15-45 keV recoil energy interval; the present sensitivity appears to be limited by the fast ambient neutrons. Upgrades in progress on the installation are summarized.Comment: Submitted to Astroparticle Physics, 14 page

    Identification of backgrounds in the EDELWEISS-I dark matter search experiment

    Get PDF
    This paper presents our interpretation and understanding of the different backgrounds in the EDELWEISS-I data sets. We analyze in detail the several populations observed, which include gammas, alphas, neutrons, thermal sensor events and surface events, and try to combine all data sets to provide a coherent picture of the nature and localisation of the background sources. In light of this interpretation, we draw conclusions regarding the background suppression scheme for the EDELWEISS-II phase

    Measurement of the response of heat-and-ionization germanium detectors to nuclear recoils

    Get PDF
    The heat quenching factor Q' (the ratio of the heat signals produced by nuclear and electron recoils of equal energy) of the heat-and-ionization germanium bolometers used by the EDELWEISS collaboration has been measured. It is explained how this factor affects the energy scale and the effective quenching factor observed in calibrations with neutron sources. This effective quenching effect is found to be equal to Q/Q', where Q is the quenching factor of the ionization yield. To measure Q', a precise EDELWEISS measurement of Q/Q' is combined with values of Q obtained from a review of all available measurements of this quantity in tagged neutron beam experiments. The systematic uncertainties associated with this method to evaluate Q' are discussed in detail. For recoil energies between 20 and 100 keV, the resulting heat quenching factor is Q' = 0.91+-0.03+-0.04, where the two errors are the contributions from the Q and Q/Q' measurements, respectively. The present compilation of Q values and evaluation of Q' represent one of the most precise determinations of the absolute energy scale for any detector used in direct searches for dark matter.Comment: 28 pages, 7 figures. Submitted to Phys. Rev.

    Status of the EDELWEISS Experiment

    Get PDF
    The status of the EDELWEISS experiment (underground dark matter search with heat-ionisation bolometers) is reviewed. Auspicious results achieved with a prototype 70 g Ge heat-ionisation detector under a 2 V reverse bias tension are discussed. Based on gamma and neutron calibrations, a best-case rejection factor, over the 15-45 keV range, of 99.7 % for gammas, with an acceptance of 94 % for neutrons, is presented first. Some operational results of physical interest obtained under poor low radioactivity conditions follow. They include a raw event rate of around 30 events/day/kg/keV over the same energy range, and, after rejection of part of the background, lead to a conservative upper limit on the signal of approximately 1.6 events/day/kg/keV at a 90 % confidence level. Performance degrading surface effects of the detector are speculated upon; and planned upgrades are summarized.Comment: 5 pages, 4 eps figures, LaTeX requires espcrc2.sty; Proceedings of TAUP97, Gran Sasso, Italy, September 7-11, 199
    corecore