1,257 research outputs found
Review of Top Quark Physics Results
As the heaviest known fundamental particle, the top quark has taken a central
role in the study of fundamental interactions. Production of top quarks in
pairs provides an important probe of strong interactions. The top quark mass is
a key fundamental parameter which places a valuable constraint on the Higgs
boson mass and electroweak symmetry breaking. Observations of the relative
rates and kinematics of top quark final states constrain potential new physics.
In many cases, the tests available with study of the top quark are both
critical and unique. Large increases in data samples from the Fermilab Tevatron
have been coupled with major improvements in experimental techniques to produce
many new precision measurements of the top quark. The first direct evidence for
electroweak production of top quarks has been obtained, with a resulting direct
determination of . Several of the properties of the top quark have been
measured. Progress has also been made in obtaining improved limits on potential
anomalous production and decay mechanisms. This review presents an overview of
recent theoretical and experimental developments in this field. We also provide
a brief discussion of the implications for further efforts.Comment: 119 pages, 55 figure
Governance of the international linear collider project
PoS(ICHEP 2010)516 - http://pos.sissa.itInternational audienceGovernance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realise the ILC successfully are outlined
Beautiful Mirrors and Precision Electroweak Data
The Standard Model (SM) with a light Higgs boson provides a very good
description of the precision electroweak observable data coming from the LEP,
SLD and Tevatron experiments. Most of the observables, with the notable
exception of the forward-backward asymmetry of the bottom quark, point towards
a Higgs mass far below its current experimental bound. The disagreement, within
the SM, between the values for the weak mixing angle as obtained from the
measurement of the leptonic and hadronic asymmetries at lepton colliders, may
be taken to indicate new physics contributions to the precision electroweak
observables. In this article we investigate the possibility that the inclusion
of additional bottom-like quarks could help resolve this discrepancy. Two
inequivalent assignments for these new quarks are analysed. The resultant fits
to the electroweak data show a significant improvement when compared to that
obtained in the SM. While in one of the examples analyzed, the exotic quarks
are predicted to be light, with masses below 300 GeV, and the Higgs tends to be
heavy, in the second one the Higgs is predicted to be light, with a mass below
250 GeV, while the quarks tend to be heavy, with masses of about 800 GeV. The
collider signatures associated with the new exotic quarks, as well as the
question of unification of couplings within these models and a possible
cosmological implication of the new physical degrees of freedom at the weak
scale are also discussed.Comment: 21 pages, 4 embedded postscript figures, LaTeX. Two minor corrections
performe
R_b and New Physics: A Comprehensive Analysis
We survey the implications for new physics of the discrepancy between the LEP
measurement of and its Standard Model prediction. Two broad classes of
models are considered: () those in which new Z\bbar b couplings arise at
tree level, through or -quark mixing with new particles, and ()
those in which new scalars and fermions alter the Z \bbar b vertex at one
loop. We keep our analysis as general as possible in order to systematically
determine what kinds of features can produce corrections to of the right
sign and magnitude. We are able to identify several successful mechanisms,
which include most of those which have been recently been proposed in the
literature, as well as some earlier proposals (\eg\ supersymmetric models). By
seeing how such models appear as special cases of our general treatment we are
able to shed light on the reason for, and the robustness of, their ability to
explain .Comment: 60 pages, 8 figures, plain tex, uses epsf. Final version to appear in
Phys. Rev. D; propgating sign error corrected in eqs. 78, 87, 88, 89, 98, and
107; results unchange
Measurement of the Branching Fraction for B- --> D0 K*-
We present a measurement of the branching fraction for the decay B- --> D0
K*- using a sample of approximately 86 million BBbar pairs collected by the
BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is
detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the
K*- through its decay to K0S pi-. We measure the branching fraction to be
B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid
Communications
Study of e+e- --> pi+ pi- pi0 process using initial state radiation with BABAR
The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass
energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with
the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum
we have obtained the products of branching fractions for the omega and phi
mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and
B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the
e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range
1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events
have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18
+/- 0.19)% has been measured.Comment: 21 pages, 37 postscript figues, submitted to Phys. Rev.
The FLASHForward Facility at DESY
The FLASHForward project at DESY is a pioneering plasma-wakefield
acceleration experiment that aims to produce, in a few centimetres of ionised
hydrogen, beams with energy of order GeV that are of quality sufficient to be
used in a free-electron laser. The plasma wave will be driven by high-current
density electron beams from the FLASH linear accelerator and will explore both
external and internal witness-beam injection techniques. The plasma is created
by ionising a gas in a gas cell with a multi-TW laser system, which can also be
used to provide optical diagnostics of the plasma and electron beams due to the
<30 fs synchronisation between the laser and the driving electron beam. The
operation parameters of the experiment are discussed, as well as the scientific
program.Comment: 19 pages, 9 figure
Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Measurements of transverse energy flow are presented for neutral current
deep-inelastic scattering events produced in positron-proton collisions at
HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to
2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the
hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in
the hadronic centre of mass frame and is studied as a function of Q^2, x, W and
pseudorapidity. A comparison is made with QCD based models. The behaviour of
the mean transverse energy in the central pseudorapidity region and an interval
corresponding to the photon fragmentation region are analysed as a function of
Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.
- …