226 research outputs found
Evaluation of signal peptide prediction algorithms for identification of mycobacterial signal peptides using sequence data from proteomic methods
Secreted proteins play an important part in the pathogenicity of Mycobacterium tuberculosis, and are the primary source of vaccine and diagnostic candidates. A majority of these proteins are exported via the signal peptidase I-dependent pathway, and have a signal peptide that is cleaved off during the secretion process. Sequence similarities within signal peptides have spurred the development of several algorithms for predicting their presence as well as the respective cleavage sites. For proteins exported via this pathway, algorithms exist for eukaryotes, and for Gram-negative and Gram-positive bacteria. However, the unique structure of the mycobacterial membrane raises the question of whether the existing algorithms are suitable for predicting signal peptides within mycobacterial proteins. In this work, we have evaluated the performance of nine signal peptide prediction algorithms on a positive validation set, consisting of 57 proteins with a verified signal peptide and cleavage site, and a negative set, consisting of 61 proteins that have an N-terminal sequence that confirms the annotated translational start site. We found the hidden Markov model of SignalP v3.0 to be the best-performing algorithm for predicting the presence of a signal peptide in mycobacterial proteins. It predicted no false positives or false negatives, and predicted a correct cleavage site for 45 of the 57 proteins in the positive set. Based on these results, we used the hidden Markov model of SignalP v3.0 to analyse the 10 available annotated proteomes of mycobacterial species, including annotations of M. tuberculosis H37Rv from the Wellcome Trust Sanger Institute and the J. Craig Venter Institute (JCVI). When excluding proteins with transmembrane regions among the proteins predicted to harbour a signal peptide, we found between 7.8 and 10.5 % of the proteins in the proteomes to be putative secreted proteins. Interestingly, we observed a consistent difference in the percentage of predicted proteins between the Sanger Institute and JCVI. We have determined the most valuable algorithm for predicting signal peptidase I-processed proteins of M. tuberculosis, and used this algorithm to estimate the number of mycobacterial proteins with the potential to be exported via this pathway
Prediction of metabolic clusters in early lactation dairy cows using models based on 2 milk biomarkers
The aim of this study was to describe metabolism of early-lactation dairy cows by clustering cows based on glucose, insulin-like growth factor I (IGF-I), free fatty acid, and beta-hydroxybutyrate (BHB) using the k-means method. Predictive models for metabolic clusters were created and validated using 3 sets of milk biomarkers (milk metabolites and enzymes, glycans on the immuno-gamma globulin fraction of milk, and Fourier-transform mid-infrared spectra of milk). Metabolic clusters are used to identify dairy cows with a balanced or imbalanced metabolic profile. Around 14 and 35 d in milk, serum or plasma concentrations of BHB, free fatty acids, glucose, and IGF-I were determined. Cows with a favorable metabolic profile were grouped together in what was referred to as the "balanced" group (n = 43) and were compared with cows in what was referred to as the "other balanced" group (n = 64). Cows with an unfavorable metabolic profile were grouped in what was referred to as the "imbalanced" group (n = 19) and compared with cows in what was referred to as the "other imbalanced" group (n = 88). Glucose and IGF-I were higher in balanced compared with other balanced cows. Free fatty acids and BHB were lower in balanced compared with other balanced cows. Glucose and IGF-I were lower in imbalanced compared with other imbalanced cows. Free fatty acids arid BHB were higher in imbalanced cows. Metabolic clusters were related to production parameters. There was a trend for a higher daily increase in fat- and protein-corrected milk yield in balanced cows, whereas that of imbalanced cows was higher. Dry matter intake and the daily increase in dry matter intake were higher in balanced cows and lower in imbalanced cows. Energy balance was continuously higher in balanced cows and lower in imbalanced cows. Weekly or twice-weekly milk samples were taken and milk metabolites and enzymes (milk glucose, glucose-6-phosphate, BHB, lactate dehydrogenase, N-acetyl-beta-D-glucosaminidase, isocitrate), immunogamma globulin glycans (19 peaks), and Fourier-transform mid-infrared spectra (1,060 wavelengths reduced to 15 principal components) were determined. Milk biomarkers with or without additional cow information (days in milk, parity, milk yield featurs) were used to create predictive models for the metabolic clusters. Accuracy for prediction of balanced (80%) and imbalanced (88%) cows was highest using milk metabolites and enzymes combined with days in milk and parity. The results and models of the present study are part of the GplusE project and identify novel milk-based phenotypes that may be used as predictors for metabolic and performance traits in early-lactation dairy cows
HDP—A Novel Heme Detoxification Protein from the Malaria Parasite
When malaria parasites infect host red blood cells (RBC) and proteolyze hemoglobin, a unique, albeit poorly understood parasite-specific mechanism, detoxifies released heme into hemozoin (Hz). Here, we report the identification and characterization of a novel Plasmodium Heme Detoxification Protein (HDP) that is extremely potent in converting heme into Hz. HDP is functionally conserved across Plasmodium genus and its gene locus could not be disrupted. Once expressed, the parasite utilizes a circuitous “Outbound–Inbound” trafficking route by initially secreting HDP into the cytosol of infected RBC. A subsequent endocytosis of host cytosol (and hemoglobin) delivers HDP to the food vacuole (FV), the site of Hz formation. As Hz formation is critical for survival, involvement of HDP in this process suggests that it could be a malaria drug target
Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
Background The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D. Methods Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts. Results We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling. Conclusions Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.Peer reviewe
FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens
<p>Abstract</p> <p>Background</p> <p>The availability of sequence data of human pathogenic fungi generates opportunities to develop Bioinformatics tools and resources for vaccine development towards benefitting at-risk patients.</p> <p>Description</p> <p>We have developed a fungal adhesin predictor and an immunoinformatics database with predicted adhesins. Based on literature search and domain analysis, we prepared a positive dataset comprising adhesin protein sequences from human fungal pathogens <it>Candida albicans, Candida glabrata, Aspergillus fumigatus, Coccidioides immitis, Coccidioides posadasii, Histoplasma capsulatum, Blastomyces dermatitidis, Pneumocystis carinii, Pneumocystis jirovecii and Paracoccidioides brasiliensis</it>. The negative dataset consisted of proteins with high probability to function intracellularly. We have used 3945 compositional properties including frequencies of mono, doublet, triplet, and multiplets of amino acids and hydrophobic properties as input features of protein sequences to Support Vector Machine. Best classifiers were identified through an exhaustive search of 588 parameters and meeting the criteria of best Mathews Correlation Coefficient and lowest coefficient of variation among the 3 fold cross validation datasets. The "FungalRV adhesin predictor" was built on three models whose average Mathews Correlation Coefficient was in the range 0.89-0.90 and its coefficient of variation across three fold cross validation datasets in the range 1.2% - 2.74% at threshold score of 0. We obtained an overall MCC value of 0.8702 considering all 8 pathogens, namely, <it>C. albicans, C. glabrata, A. fumigatus, B. dermatitidis, C. immitis, C. posadasii, H. capsulatum </it>and <it>P. brasiliensis </it>thus showing high sensitivity and specificity at a threshold of 0.511. In case of <it>P. brasiliensis </it>the algorithm achieved a sensitivity of 66.67%. A total of 307 fungal adhesins and adhesin like proteins were predicted from the entire proteomes of eight human pathogenic fungal species. The immunoinformatics analysis data on these proteins were organized for easy user interface analysis. A Web interface was developed for analysis by users. The predicted adhesin sequences were processed through 18 immunoinformatics algorithms and these data have been organized into MySQL backend. A user friendly interface has been developed for experimental researchers for retrieving information from the database.</p> <p>Conclusion</p> <p>FungalRV webserver facilitating the discovery process for novel human pathogenic fungal adhesin vaccine has been developed.</p
DETORQUEO, QUIRKY, and ZERZAUST Represent Novel Components Involved in Organ Development Mediated by the Receptor-Like Kinase STRUBBELIG in Arabidopsis thaliana
Intercellular signaling plays an important role in controlling cellular behavior in apical meristems and developing organs in plants. One prominent example in Arabidopsis is the regulation of floral organ shape, ovule integument morphogenesis, the cell division plane, and root hair patterning by the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB). Interestingly, kinase activity of SUB is not essential for its in vivo function, indicating that SUB may be an atypical or inactive receptor-like kinase. Since little is known about signaling by atypical receptor-like kinases, we used forward genetics to identify genes that potentially function in SUB-dependent processes and found recessive mutations in three genes that result in a sub-like phenotype. Plants with a defect in DETORQEO (DOQ), QUIRKY (QKY), and ZERZAUST (ZET) show corresponding defects in outer integument development, floral organ shape, and stem twisting. The mutants also show sub-like cellular defects in the floral meristem and in root hair patterning. Thus, SUB, DOQ, QKY, and ZET define the STRUBBELIG-LIKE MUTANT (SLM) class of genes. Molecular cloning of QKY identified a putative transmembrane protein carrying four C2 domains, suggesting that QKY may function in membrane trafficking in a Ca2+-dependent fashion. Morphological analysis of single and all pair-wise double-mutant combinations indicated that SLM genes have overlapping, but also distinct, functions in plant organogenesis. This notion was supported by a systematic comparison of whole-genome transcript profiles during floral development, which molecularly defined common and distinct sets of affected processes in slm mutants. Further analysis indicated that many SLM-responsive genes have functions in cell wall biology, hormone signaling, and various stress responses. Taken together, our data suggest that DOQ, QKY, and ZET contribute to SUB-dependent organogenesis and shed light on the mechanisms, which are dependent on signaling through the atypical receptor-like kinase SUB
- …