469 research outputs found
Phase-resolved Crab pulsar measurements from 25 to 400 GeV with the MAGIC telescopes
We report on observations of the Crab pulsar with the MAGIC telescopes. Our
data were taken in both monoscopic (> 25GeV) and stereoscopic (> 50GeV)
observation modes. Two peaks were detected with both modes and phase-resolved
energy spectra were calculated. By comparing with Fermi- LAT measurements, we
find that the energy spectrum of the Crab pulsar does not follow a power law
with an exponential cutoff, but has an additional hard component, extending up
to at least 400 GeV. This suggests that the emission above 25 GeV is not
dominated by curvature radiation, as suggested in the standard scenarios of the
OG and SG models.Comment: 4 pages, 2 figures, Proc. TAUP 2011, submitted for publication in
JCP
Multiscale Bone Remodelling with Spatial P Systems
Many biological phenomena are inherently multiscale, i.e. they are
characterized by interactions involving different spatial and temporal scales
simultaneously. Though several approaches have been proposed to provide
"multilayer" models, only Complex Automata, derived from Cellular Automata,
naturally embed spatial information and realize multiscaling with
well-established inter-scale integration schemas. Spatial P systems, a variant
of P systems in which a more geometric concept of space has been added, have
several characteristics in common with Cellular Automata. We propose such a
formalism as a basis to rephrase the Complex Automata multiscaling approach
and, in this perspective, provide a 2-scale Spatial P system describing bone
remodelling. The proposed model not only results to be highly faithful and
expressive in a multiscale scenario, but also highlights the need of a deep and
formal expressiveness study involving Complex Automata, Spatial P systems and
other promising multiscale approaches, such as our shape-based one already
resulted to be highly faithful.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
A major electronics upgrade for the H.E.S.S. Cherenkov telescopes 1-4
The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging
atmospheric Cherenkov telescopes (IACTs) located in the Khomas Highland in
Namibia. It consists of four 12-m telescopes (CT1-4), which started operations
in 2003, and a 28-m diameter one (CT5), which was brought online in 2012. It is
the only IACT system featuring telescopes of different sizes, which provides
sensitivity for gamma rays across a very wide energy range, from ~30 GeV up to
~100 TeV. Since the camera electronics of CT1-4 are much older than the one of
CT5, an upgrade is being carried out; first deployment was in 2015, full
operation is planned for 2016. The goals of this upgrade are threefold:
reducing the dead time of the cameras, improving the overall performance of the
array and reducing the system failure rate related to aging. Upon completion,
the upgrade will assure the continuous operation of H.E.S.S. at its full
sensitivity until and possibly beyond the advent of CTA. In the design of the
new components, several CTA concepts and technologies were used and are thus
being evaluated in the field: The upgraded read-out electronics is based on the
NECTAR readout chips; the new camera front- and back-end control subsystems are
based on an FPGA and an embedded ARM computer; the communication between
subsystems is based on standard Ethernet technologies. These hardware solutions
offer good performance, robustness and flexibility. The design of the new
cameras is reported here.Comment: Proceedings of the 34th International Cosmic Ray Conference, 30 July-
6 August, 2015, The Hague, The Netherland
Detailed spectral and morphological analysis of the shell type SNR RCW 86
Aims: We aim for an understanding of the morphological and spectral
properties of the supernova remnant RCW~86 and for insights into the production
mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods:
We analyzed High Energy Spectroscopic System data that had increased
sensitivity compared to the observations presented in the RCW~86 H.E.S.S.
discovery publication. Studies of the morphological correlation between the
0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions
have been performed as well as broadband modeling of the spectral energy
distribution with two different emission models. Results:We present the first
conclusive evidence that the TeV gamma-ray emission region is shell-like based
on our morphological studies. The comparison with 2-5~keV X-ray data reveals a
correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is
best described by a power law with an exponential cutoff at TeV and a spectral index of ~. A static
leptonic one-zone model adequately describes the measured spectral energy
distribution of RCW~86, with the resultant total kinetic energy of the
electrons above 1 GeV being equivalent to 0.1\% of the initial kinetic
energy of a Type I a supernova explosion. When using a hadronic model, a
magnetic field of ~100G is needed to represent the measured data.
Although this is comparable to formerly published estimates, a standard
E spectrum for the proton distribution cannot describe the gamma-ray
data. Instead, a spectral index of ~1.7 would be required, which
implies that ~erg has been transferred into
high-energy protons with the effective density cm^-3. This
is about 10\% of the kinetic energy of a typical Type Ia supernova under the
assumption of a density of 1~cm^-3.Comment: accepted for publication by A&
Fermi observations of TeV-selected AGN
We report on observations of TeV-selected AGN made during the first 5.5
months of observations with the Large Area Telescope (LAT) on-board the Fermi
Gamma-ray Space Telescope (Fermi). In total, 96 AGN were selected for study,
each being either (i) a source detected at TeV energies (28 sources) or (ii) an
object that has been studied with TeV instruments and for which an upper-limit
has been reported (68 objects). The Fermi observations show clear detections of
38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources and 29
were not in the third EGRET catalog. For each of the 38 Fermi-detected sources,
spectra and light curves are presented. Most can be described with a power law
of spectral index harder than 2.0, with a spectral break generally required to
accommodate the TeV measurements. Based on an extrapolation of the Fermi
spectrum, we identify sources, not previously detected at TeV energies, which
are promising targets for TeV instruments. Evidence for systematic evolution of
the -ray spectrum with redshift is presented and discussed in the
context of interaction with the EBL.Comment: 51 pages, 6 figures, accepted for The Astronomical Journa
The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud
The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been
observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of
100 billion electron volts for a deep exposure of 210 hours. Three sources of
different types were detected: the pulsar wind nebula of the most energetic
pulsar known N 157B, the radio-loud supernova remnant N 132D and the largest
non-thermal X-ray shell - the superbubble 30 Dor C. The unique object SN 1987A
is, surprisingly, not detected, which constrains the theoretical framework of
particle acceleration in very young supernova remnants. These detections reveal
the most energetic tip of a gamma-ray source population in an external galaxy,
and provide via 30 Dor C the unambiguous detection of gamma-ray emission from a
superbubble.Comment: Published in Science Magazine (Jan. 23, 2015). This ArXiv version has
the supplementary online material incorporated as an appendix to the main
pape
Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT
Studying the temporal variability of BL Lac objects at the highest energies
provides unique insights into the extreme physical processes occurring in
relativistic jets and in the vicinity of super-massive black holes. To this
end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in
the high (HE, 100 MeV 200 GeV)
gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE
light curve in the quiescent state is consistent with a log-normal behavior.
The VHE variability in this state is well described by flicker noise
(power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales
larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives
consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10
days) compatible with the VHE findings. The HE and VHE power spectral densities
show a scale invariance across the probed time ranges. A direct linear
correlation between the VHE and HE fluxes could neither be excluded nor firmly
established. These long-term-variability properties are discussed and compared
to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during
VHE-flaring states. The difference in power spectral noise behavior at VHE
energies during quiescent and flaring states provides evidence that these
states are influenced by different physical processes, while the compatibility
of the HE and VHE long-term results is suggestive of a common physical link as
it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure
Discovery of Pulsed -rays from PSR J0034-0534 with the Fermi LAT: A Case for Co-located Radio and -ray Emission Regions
Millisecond pulsars (MSPs) have been firmly established as a class of
gamma-ray emitters via the detection of pulsations above 0.1 GeV from eight
MSPs by the Fermi Large Area Telescope (LAT). Using thirteen months of LAT data
significant gamma-ray pulsations at the radio period have been detected from
the MSP PSR J0034-0534, making it the ninth clear MSP detection by the LAT. The
gamma-ray light curve shows two peaks separated by 0.2740.015 in phase
which are very nearly aligned with the radio peaks, a phenomenon seen only in
the Crab pulsar until now. The 0.1 GeV spectrum of this pulsar is well
fit by an exponentially cutoff power law with a cutoff energy of 1.80.1 GeV and a photon index of 1.50.1, first errors are
statistical and second are systematic. The near-alignment of the radio and
gamma-ray peaks strongly suggests that the radio and gamma-ray emission regions
are co-located and both are the result of caustic formation.Comment: 20 pages, 3 figures, 2 tables. Accepted for publication in Ap
Fermi LAT observations of the Geminga pulsar
We report on the \textit{Fermi}-LAT observations of the Geminga pulsar, the
second brightest non-variable GeV source in the -ray sky and the first
example of a radio-quiet -ray pulsar. The observations cover one year,
from the launch of the satellite through 2009 June 15. A data sample of
over 60,000 photons enabled us to build a timing solution based solely on
rays. Timing analysis shows two prominent peaks, separated by = 0.497 0.004 in phase, which narrow with increasing energy. Pulsed
rays are observed beyond 18 GeV, precluding emission below 2.7 stellar
radii because of magnetic absorption. The phase-averaged spectrum was fitted
with a power law with exponential cut-off of spectral index = (1.30
0.01 0.04), cut-off energy = (2.46 0.04 0.17)
GeV and an integral photon flux above 0.1 GeV of (4.14 0.02 0.32)
10 cm s. The first uncertainties are statistical
and the second are systematic. The phase-resolved spectroscopy shows a clear
evolution of the spectral parameters, with the spectral index reaching a
minimum value just before the leading peak and the cut-off energy having maxima
around the peaks. Phase-resolved spectroscopy reveals that pulsar emission is
present at all rotational phases. The spectral shape, broad pulse profile, and
maximum photon energy favor the outer magnetospheric emission scenarios.Comment: 32 pages, 12 figures, 3 tables. Accepted for publication in The
Astrophysical Journal. Corresponding authors: Denis Dumora
([email protected]), Fabio Gargano ([email protected]),
Massimiliano Razzano ([email protected]
- …