423 research outputs found

    Development of a Ta/TaN/TaNx(Ag)y/TaN nanocomposite coating system and bio-response study for biomedical applications

    Full text link
    [EN] TaN(Ag) composited coatings are being investigated to improve biocompatibility of different biomedical devices due to the mechanical and chemical stability of TaN and bactericidal effect of silver nanoparticles. However, controlling the size, density, shape and especially the release of silver ions (Ag) into the surrounding medium becomes a challenge, since elevated levels of Ag could be cytotoxic. The aim of this work is to design and develop a new Ta/TaN/TaNx(Ag)y/TaN coating system, deposited by unbalanced DC magnetron sputtering technique, presenting an adequate balance between biocompatibility and bactericidal effect for potential applications in biomedical field. For this purpose, four different coating systems were deposited on 316 L stainless steel and silicon (100) samples applying a bias voltage of ¿30, ¿60, ¿90 and ¿120 V during the deposition of the top layer of TaN to vary its density. This manufacturing strategy allowed controlling the diffusion of silver nanoparticles to the coating surface and the release kinetics of silver ions in simulated body fluid (SBF). Biologic characterization has been performed with MC3T3-E1 pre-osteoblastic cells in terms of cell adhesion and long-term differentiation. Additionally, the adhesion and biofilm formation of the bacteria Streptococcus sanguinis strain in the deposited coating systems of Ta/TaN/TaNx(Ag)y/TaN were analyzed. The results indicated an improvement of cell adhesion and differentiation of the composited coating deposited with a bias of ¿30 V compared to other coatings. Concordantly, this coating showed the lowest bacterial adhesion and biofilm formation, representing an attractive and suitable composited material for biomedical applications.The technical support from the Spanish Ministry of Economy and Competitiveness (MINECO) (through the MAT2015-69315-C3-1-R) and FEDER funds project are acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Echavarria, AM.; Rico Tortosa, PM.; Gómez Ribelles, JL.; Pacha-Olivenza, MA.; Fernandez-Calderon, M.; Bejarano-G, G. (2017). Development of a Ta/TaN/TaNx(Ag)y/TaN nanocomposite coating system and bio-response study for biomedical applications. Vacuum. 145:55-67. https://doi.org/10.1016/j.vacuum.2017.08.020S556714

    Multi-Wavelength Observations of the Blazar 1ES 1011+496 in Spring 2008

    Get PDF
    The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on nonsimultaneous data, and is well described by a standard one zone synchrotron self Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.Comment: 13 pages, accepted for publication in MNRA

    Observation of Pulsed Gamma-rays Above 25 GeV from the Crab Pulsar with MAGIC

    Get PDF
    One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 GeV. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 GeV, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot-gap scenario.Comment: Slight modification of the analysis: Fitting a more general function to the combined data set of COMPTEL, EGRET and MAGIC. Final result and conclusion is unchange

    First bounds on the very high energy gamma-ray emission from Arp 220

    Get PDF
    Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15 hours. No significant signal was detected within the dedicated amount of observation time. The first upper limits to the very high energy γ\gamma-ray flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap

    Discovery of VHE Gamma Radiation from IC443 with the MAGIC Telescope

    Get PDF
    We report the detection of a new source of very high energy (VHE, E_gamma >= 100GeV) gamma-ray emission located close to the Galactic Plane, MAGIC J0616+225, which is spatially coincident with SNR IC443. The observations were carried out with the MAGIC telescope in the periods December 2005 - January 2006 and December 2006 - January 2007. Here we present results from this source, leading to a VHE gamma-ray signal with a statistical significance of 5.7 sigma in the 2006/7 data and a measured differential gamma-ray flux consistent with a power law, described as dN_gamma/(dA dt dE) = (1.0 +/- 0.2)*10^(-11)(E/0.4 TeV)^(-3.1 +/- 0.3) cm^(-2)s^(-1)TeV^(-1). We briefly discuss the observational technique used and the procedure implemented for the data analysis. The results are put in the perspective of the multiwavelength emission and the molecular environment found in the region of IC443.Comment: Accepted by ApJ Letter

    Constraints on the steady and pulsed very high energy gamma-ray emission from observations of PSR B1951+32/CTB 80 with the MAGIC Telescope

    Get PDF
    We report on very high energy gamma-observations with the MAGIC Telescope of the pulsar PSR B1951+32 and its associated nebula, CTB 80. Our data constrain the cutoff energy of the pulsar to be less than 32 GeV, assuming the pulsed gamma-ray emission to be exponentially cut off. The upper limit on the flux of pulsed gamma-ray emission above 75 GeV is 4.3*10^-11 photons cm^-2 sec^-1, and the upper limit on the flux of steady emission above 140 GeV is 1.5*10^-11 photons cm^-2 sec^-1. We discuss our results in the framework of recent model predictions and other studies.Comment: 7 pages, 7 figures, replaced with published versio

    MAGIC upper limits on the very high energy emission from GRBs

    Get PDF
    The fast repositioning system of the MAGIC Telescope has allowed during its first data cycle, between 2005 and the beginning of year 2006, observing nine different GRBs as possible sources of very high energy gammas. These observations were triggered by alerts from Swift, HETE-II, and Integral; they started as fast as possible after the alerts and lasted for several minutes, with an energy threshold varying between 80 and 200 GeV, depending upon the zenith angle of the burst. No evidence for gamma signals was found, and upper limits for the flux were derived for all events, using the standard analysis chain of MAGIC. For the bursts with measured redshift, the upper limits are compatible with a power law extrapolation, when the intrinsic fluxes are evaluated taking into account the attenuation due to the scattering in the Metagalactic Radiation Field (MRF).Comment: 25 pages, 9 figures, final version accepted by ApJ. Changet title to "MAGIC upped limits on the VERY high energy emission from GRBs", re-organized chapter with description of observation, removed non necessaries figures, added plot of effective area depending on zenith angle, added an appendix explaining the upper limit calculation, added some reference

    Oscillation Physics with a Neutrino Factory

    Get PDF
    A generation of neutrino experiments have established that neutrinos mix and probably have mass. The mixing phenomenon points to processes beyond those of the Standard Model, possibly at the Grand Unification energy scale. A extensive sequence of of experiments will be required to measure precisely all the parameters of the neutrino mixing matrix, culminating with the discovery and study of leptonic CP violation. As a first step, extensions of conventional pion/kaon decay beams, such as off-axis beams or low-energy super-beams, have been considered. These could yield first observations of νμνe\nu_\mu \to \nu_e transitions at the atmospheric frequency, which have not yet been observed, and a first measurement of θ13\theta_{13}. Experiments with much better flux control can be envisaged if the neutrinos are obtained from the decays of stored particles. One such possibility is the concept of beta beams provided by the decays of radioactive nuclei, that has been developed within the context of these studies. These would provide a pure (anti-)electron-neutrino beam of a few hundred MeV, and beautiful complementarity with a high-intensity, low-energy conventional beam, enabling experimental probes of T violation as well as CP violation. Ultimately, a definitive and complete set of measurements would offered by a Neutrino Factory based on a muon storage ring. This powerful machine offers the largest reach for CP violation, even for very small values of θ13\theta_{13}

    Chromatin regulation by Histone H4 acetylation at Lysine 16 during cell death and differentiation in the myeloid compartment

    Get PDF
    Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death
    corecore