107 research outputs found

    Preservation of quality of life in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer treated with tucatinib or placebo when added to trastuzumab and capecitabine (HER2CLIMB trial)

    Get PDF
    AIMS: In HER2CLIMB, tucatinib significantly improved progression-free and overall survival in patients with human epidermal growth factor receptor 2–positive (HER2+) metastatic breast cancer. We evaluated the impact of tucatinib on health-related quality of life (HR-QoL) in HER2CLIMB. METHODS: Patients were randomised 2:1 to tucatinib or placebo combined with trastuzumab and capecitabine. Starting with protocol version 7, the EuroQol 5 Dimensions 5 Levels (EQ-5D-5L) questionnaire and EQ visual analogue scale (VAS) were administered at day 1 of cycle 1, every two cycles during cycles 3–9, every three cycles during cycle 12 and thereafter and at each patient's 30-day follow-up visit. RESULTS: Among 364 patients eligible for HR-QoL assessment, 331 (91%) completed ≥1 assessment. EQ-VAS scores were similar for both arms at baseline and maintained throughout treatment. EQ-5D-5L scores were similar between the treatment arms, stable throughout therapy and worsened after discontinuing treatment. Risk of meaningful deterioration (≥7 points) on EQ-VAS was reduced 19% in the tucatinib vs. placebo arm (hazard ratio [HR]: 0.81; 95% confidence interval [CI]: 0.55, 1.18); the median (95% CI) time to deterioration was not reached in the tucatinib arm and was 5.8 months (4.3, -) in the placebo arm. Among patients with brain metastases (n = 164), risk of meaningful deterioration on EQ-VAS was reduced 49% in the tucatinib arm (HR: 0.51; 95% CI: 0.28, 0.93); the median (95% CI) time to deterioration was not reached in the tucatinib arm and was 5.5 months (4.2, -) in the placebo arm. CONCLUSIONS: HR-QoL was preserved for patients with HER2+ metastatic breast cancer who were treated with tucatinib added to trastuzumab and capecitabine and maintained longer with tucatinib therapy than without it among those with brain metastases

    Methanotrophy, Methylotrophy, the Human Body and Disease

    Get PDF
    Methylotrophic Bacteria use one-carbon (C1) compounds as their carbon source. They have been known to be associated to the human body for almost 20 years as part of the normal flora and were identified as pathogens in the early 1990s in end-stage HIV patients and chemotherapy patients. In this chapter, I look at C1 compounds in the human body and exposure from the environment and then consider Methylobacterium spp. and Methylorubrum spp. in terms of infections, its role in breast and bowel cancers; Methylococcus capsulatus and its role in inflammatory bowel disease, and Brevibacterium casei and Hyphomicrobium sulfonivorans as part of the normal human flora. I also consider the abundance of methylotrophs from the Actinobacteria being identified in human studies and the potential bias of the ionic strength of culture media and the needs for future work. Within the scope of future work, I consider the need for the urgent assessment of the pathogenic, oncogenic, mutagenic and teratogenic potential of Methylobacterium spp. and Methylorubrum spp. and the need to handle them at higher containment levels until more data are available

    LensWatch: I. Resolved HST Observations and Constraints on the Strongly-Lensed Type Ia Supernova 2022qmx ("SN Zwicky")

    Full text link
    Supernovae (SNe) that have been multiply-imaged by gravitational lensing are rare and powerful probes for cosmology. Each detection is an opportunity to develop the critical tools and methodologies needed as the sample of lensed SNe increases by orders of magnitude with the upcoming Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope. The latest such discovery is of the quadruply-imaged Type Ia SN 2022qmx (aka, "SN Zwicky"; Goobar et al. 2022) at z = 0.3544. SN Zwicky was discovered by the Zwicky Transient Facility (ZTF) in spatially unresolved data. Here we present follow-up Hubble Space Telescope observations of SN Zwicky, the first from the multi-cycle "LensWatch" program (www.lenswatch.org). We measure photometry for each of the four images of SN Zwicky, which are resolved in three WFC3/UVIS filters (F475W, F625W, F814W) but unresolved with WFC3/IR F160W, and produce an analysis of the lensing system using a variety of independent lens modeling methods. We find consistency between time delays estimated with the single epoch of HST photometry and the lens model predictions constrained through the multiple image positions, with both inferring time delays of <1 day. Our lens models converge to an Einstein radius of (0.168+0.009-0.005)", the smallest yet seen in a lensed SN. The "standard candle" nature of SN Zwicky provides magnification estimates independent of the lens modeling that are brighter by ~1.5 mag and ~0.8 mag for two of the four images, suggesting significant microlensing and/or additional substructure beyond the flexibility of our image-position mass models

    Environmental Risk Assessment of Fluctuating Diazinon Concentrations in an Urban and Agricultural Catchment Using Toxicokinetic–Toxicodynamic Modeling

    Get PDF
    Temporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic–toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use. We calculated extrapolation factors to quantify variation in toxicity among species and effect types based on available toxicity data, while correcting for different test durations with the TKTD model. Sampling from the distribution of extrapolation factors and prediction of time-resolved toxicity with the TKTD model facilitated subsequent calculation of the risk of undesired toxic events. Approximately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation factors on

    Measurement of dσ/dyd\sigma/dy of Drell-Yan e+ee^+e^- pairs in the ZZ Mass Region from ppˉp\bar{p} Collisions at s=1.96\sqrt{s}=1.96 TeV

    Get PDF
    Submitted to Phys. Letter BWe report on a CDF measurement of the total cross section and rapidity distribution, dσ/dyd\sigma/dy, for qqˉγ/Ze+eq\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-} events in the ZZ boson mass region ($66M_{ee}We report on a CDF measurement of the total cross section and rapidity distribution, dσ/dy, for γ*/Z→e+e− events in the Z boson mass region (66<Mee<116 GeV/c2) produced in p pbar collisions at \sqrt{s}=1.96 TeV with 2.1 fb−1 of integrated luminosity. The measured cross section of 257±16 pb and dσ/dy distribution are compared with Next-to-Leading-Order (NLO) and Next-to-Next-to-Leading-Order (NNLO) QCD theory predictions with CTEQ and MRST/MSTW parton distribution functions (PDFs). There is good agreement between the experimental total cross section and dσ/dy measurements with theoretical calculations with the most recent NNLO PDFs.Peer reviewe

    Breast cancer in young women

    Get PDF
    Although uncommon, breast cancer in young women is worthy of special attention due to the unique and complex issues that are raised. This article reviews specific challenges associated with the care of younger breast cancer patients, which include fertility preservation, management of inherited breast cancer syndromes, maintenance of bone health, secondary prevention, and attention to psychosocial issues

    LensWatch. I. Resolved HST Observations and Constraints on the Strongly Lensed Type Ia Supernova 2022qmx (“SN Zwicky”)

    Get PDF
    Supernovae (SNe) that have been multiply imaged by gravitational lensing are rare and powerful probes for cosmology. Each detection is an opportunity to develop the critical tools and methodologies needed as the sample of lensed SNe increases by orders of magnitude with the upcoming Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope. The latest such discovery is of the quadruply imaged Type Ia SN 2022qmx (aka, “SN Zwicky”) at z = 0.3544. SN Zwicky was discovered by the Zwicky Transient Facility in spatially unresolved data. Here we present follow-up Hubble Space Telescope observations of SN Zwicky, the first from the multicycle “LensWatch (www.lenswatch.org)” program. We measure photometry for each of the four images of SN Zwicky, which are resolved in three WFC3/UVIS filters (F475W, F625W, and F814W) but unresolved with WFC3/IR F160W, and present an analysis of the lensing system using a variety of independent lens modeling methods. We find consistency between lens-model-predicted time delays (≲1 day), and delays estimated with the single epoch of Hubble Space Telescope colors (≲3.5 days), including the uncertainty from chromatic microlensing (∼1-1.5 days). Our lens models converge to an Einstein radius of θ E = ( 0.168 − 0.005 + 0.009 ) ″ , the smallest yet seen in a lensed SN system. The “standard candle” nature of SN Zwicky provides magnification estimates independent of the lens modeling that are brighter than predicted by ∼ 1.7 − 0.6 + 0.8 mag and ∼ 0.9 − 0.6 + 0.8 mag for two of the four images, suggesting significant microlensing and/or additional substructure beyond the flexibility of our image-position mass models
    corecore