328 research outputs found

    Critical review of the Appropriate Use Criteria for amyloid imaging: Effect on diagnosis and patient care

    Get PDF
    INTRODUCTION: The utility of the Appropriate Use Criteria (AUC) for amyloid imaging is not established. METHODS: Fifty-three cognitively impaired patients with clinical F18-florbetapir imaging were classified as early and late onset, as well as AUC-consistent or AUC-inconsistent. Chi-square statistics and t test were used to compare demographic characteristics and clinical outcomes as appropriate. RESULTS: Early-onset patients were more likely to be amyloid positive. Change in diagnosis was more frequent in late-onset cases. Change in therapy was more common in early-onset cases. AUC-consistent and AUC-inconsistent cases had comparable rates of amyloid positivity. We saw no difference in the rate of treatment changes in the AUC-consistent group as opposed to the AUC-inconsistent group. DISCUSSION: The primary role of amyloid imaging in the early-onset group was to confirm the clinically suspected etiology, and in the late-onset group in detecting amyloid-negative cases. The rate of therapeutic changes was significantly greater in the early-onset cases

    Surface Feature-Guided Mapping of Cerebral Metabolic Changes in Cognitively Normal and Mildly Impaired Elderly

    Get PDF
    Purpose: The aim of this study was to investigate the longitudinal positron emission tomography (PET) metabolic changes in the elderly. Procedures: Nineteen nondemented subjects (mean Mini-Mental Status Examination 29.4±0.7 SD) underwent two detailed neuropsychological evaluations and resting 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-PET scan (interval 21.7±3.7 months), baseline structural 3T magnetic resonance (MR) imaging, and apolipoprotein E4 genotyping. Cortical PET metabolic changes were analyzed in 3-D using the cortical pattern matching technique. Results: Baseline vs. follow-up whole-group comparison revealed significant metabolic decline bilaterally in the posterior temporal, parietal, and occipital lobes and the left lateral frontal cortex. The declining group demonstrated 10–15 % decline in bilateral posterior cingulate/precuneus, posterior temporal, parietal, and occipital cortices. The cognitively stable group showed 2.5–5% similarly distributed decline. ApoE4-positive individuals underwent 5–15 % metabolic decline in the posterior association cortices. Conclusions: Using 3-D surface-based MR-guided FDG-PET mapping, significant metaboli

    Morphometry Based on Effective and Accurate Correspondences of Localized Patterns (MEACOLP)

    Get PDF
    Local features in volumetric images have been used to identify correspondences of localized anatomical structures for brain morphometry. However, the correspondences are often sparse thus ineffective in reflecting the underlying structures, making it unreliable to evaluate specific morphological differences. This paper presents a morphometry method (MEACOLP) based on correspondences with improved effectiveness and accuracy. A novel two-level scale-invariant feature transform is used to enhance the detection repeatability of local features and to recall the correspondences that might be missed in previous studies. Template patterns whose correspondences could be commonly identified in each group are constructed to serve as the basis for morphometric analysis. A matching algorithm is developed to reduce the identification errors by comparing neighboring local features and rejecting unreliable matches. The two-sample t-test is finally adopted to analyze specific properties of the template patterns. Experiments are performed on the public OASIS database to clinically analyze brain images of Alzheimer's disease (AD) and normal controls (NC). MEACOLP automatically identifies known morphological differences between AD and NC brains, and characterizes the differences well as the scaling and translation of underlying structures. Most of the significant differences are identified in only a single hemisphere, indicating that AD-related structures are characterized by strong anatomical asymmetry. In addition, classification trials to differentiate AD subjects from NC confirm that the morphological differences are reliably related to the groups of interest

    Anatomical and Functional Deficits in Patients with Amnestic Mild Cognitive Impairment

    Get PDF
    Background: Anatomical and functional deficits have been studied in patients with amnestic mild cognitive impairment (MCI). However, it is unclear whether and how the anatomical deficits are related to the functional alterations. Present study aims to characterize the association between anatomical and functional deficits in MCI patients. Methods: Seventeen amnestic MCI patients and 18 healthy aging controls were scanned using a T1 Weighted MPRAGE sequence and a gradient-echo echo-planar imaging sequence. Clinical severity of MCI patients was evaluated by usin

    Discriminant analysis of intermediate brain atrophy rates in longitudinal diagnosis of alzheimer's disease

    Get PDF
    Diagnosing Alzheimer's disease through MRI neuroimaging biomarkers has been used as a complementary marker for traditional clinical markers to improve diagnostic accuracy and also help in developing new pharmacotherapeutic trials. It has been revealed that longitudinal analysis of the whole brain atrophy has the power of discriminating Alzheimer's disease and elderly normal controls. In this work, effect of involving intermediate atrophy rates and impact of using uncorrelated principal components of these features instead of original ones on discriminating normal controls and Alzheimer's disease subjects, is inspected. In fact, linear discriminative analysis of atrophy rates is used to classify subjects into Alzheimer's disease and controls. Leave-one-out cross-validation has been adopted to evaluate the generalization rate of the classifier along with its memorization. Results show that incorporating uncorrelated version of intermediate features leads to the same memorization performance as the original ones but higher generalization rate. As a conclusion, it is revealed that in a longitudinal study, using intermediate MRI scans and transferring them to an uncorrelated feature space can improve diagnostic accuracy

    The Effect of Mindfulness-based Programs on Cognitive Function in Adults: A Systematic Review and Meta-analysis

    Get PDF
    Mindfulness-based programs (MBPs) are increasingly utilized to improve mental health. Interest in the putative effects of MBPs on cognitive function is also growing. This is the first meta-analysis of objective cognitive outcomes across multiple domains from randomized MBP studies of adults. Seven databases were systematically searched to January 2020. Fifty-six unique studies (n = 2,931) were included, of which 45 (n = 2,238) were synthesized using robust variance estimation meta-analysis. Meta-regression and subgroup analyses evaluated moderators. Pooling data across cognitive domains, the summary effect size for all studies favored MBPs over comparators and was small in magnitude (g = 0.15; [0.05, 0.24]). Across subgroup analyses of individual cognitive domains/subdomains, MBPs outperformed comparators for executive function (g = 0.15; [0.02, 0.27]) and working memory outcomes (g = 0.23; [0.11, 0.36]) only. Subgroup analyses identified significant effects for studies of non-clinical samples, as well as for adults aged over 60. Across all studies, MBPs outperformed inactive, but not active comparators. Limitations include the primarily unclear within-study risk of bias (only a minority of studies were considered low risk), and that statistical constraints rendered some p-values unreliable. Together, results partially corroborate the hypothesized link between mindfulness practices and cognitive performance. This review was registered with PROSPERO [CRD42018100904]

    Mapping and characterization of novel parthenocarpy QTLs in tomato

    Get PDF
    Parthenocarpy is the development of the fruit in absence of pollination and/or fertilization. In tomato, parthenocarpy is considered as an attractive trait to solve the problems of fruit setting under unfavorable conditions. We studied the genetics of parthenocarpy in two different lines, IL5-1 and IVT-line 1, both carrying Solanum habrochaites chromosome segments. Parthenocarpy in IL5-1 is under the control of two QTLs, one on chromosome 4 (pat4.1) and one on chromosome 5 (pat5.1). IVT-line 1 also contains two parthenocarpy QTLs, one on chromosome 4 (pat4.2) and one on chromosome 9 (pat9.1). In addition, we identified one stigma exsertion locus in IL5-1, located on the long arm of chromosome 5 (se5.1). It is likely that pat4.1, from IL5-1 and pat4.2, from IVT-line 1, both located near the centromere of chromosome 4 are allelic. By making use of the microsynteny between tomato and Arabidopsis in this genetic region, we identified ARF8 as a potential candidate gene for these two QTLs. ARF8 is known to act as an inhibitor for further carpel development in Arabidopsis, in absence of pollination/fertilization. Expression of an aberrant form of the ArabidopsisARF8 gene, in tomato, has been found to cause parthenocarpy. This candidate gene approach may lead to the first isolation of a parthenocarpy gene in tomato and will allow further use in several crop species

    Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers

    Get PDF
    Accurate prediction of clinical changes of mild cognitive impairment (MCI) patients, including both qualitative change (i.e., conversion to Alzheimer's disease (AD)) and quantitative change (i.e., cognitive scores) at future time points, is important for early diagnosis of AD and for monitoring the disease progression. In this paper, we propose to predict future clinical changes of MCI patients by using both baseline and longitudinal multimodality data. To do this, we first develop a longitudinal feature selection method to jointly select brain regions across multiple time points for each modality. Specifically, for each time point, we train a sparse linear regression model by using the imaging data and the corresponding clinical scores, with an extra ‘group regularization’ to group the weights corresponding to the same brain region across multiple time points together and to allow for selection of brain regions based on the strength of multiple time points jointly. Then, to further reflect the longitudinal changes on the selected brain regions, we extract a set of longitudinal features from the original baseline and longitudinal data. Finally, we combine all features on the selected brain regions, from different modalities, for prediction by using our previously proposed multi-kernel SVM. We validate our method on 88 ADNI MCI subjects, with both MRI and FDG-PET data and the corresponding clinical scores (i.e., MMSE and ADAS-Cog) at 5 different time points. We first predict the clinical scores (MMSE and ADAS-Cog) at 24-month by using the multimodality data at previous time points, and then predict the conversion of MCI to AD by using the multimodality data at time points which are at least 6-month ahead of the conversion. The results on both sets of experiments show that our proposed method can achieve better performance in predicting future clinical changes of MCI patients than the conventional methods

    Subcortical amyloid load is associated with shape and volume in cognitively normal individuals

    Full text link
    Amyloid-beta (Aβ) deposition is one of the main hallmarks of Alzheimer’s disease. The study assessed the associations between cortical and subcortical 11C-Pittsburgh Compound B retention, namely in the hippocampus, amygdala, putamen, caudate, pallidum, and thalamus, and subcortical morphology in cognitively normal individuals. We recruited 104 cognitive normal individuals who underwent extensive neuropsychological assessment, PiB-positron emission tomography (PET) scan and 3-tesla magnetic resonance imaging (MRI) acquisition of T1-weighted images. Global, cortical, and subcortical regional PiB retention values were derived from each scan and subcortical morphology analyses were performed to investigate vertex-wise local surface and global volumes, including the hippocampal subfields volumes. We found that subcortical regional Aβ was associated with the surface of the hippocampus, thalamus, and pallidum, with changes being due to volume and shape. Hippocampal Aβ was marginally associated with volume of the whole hippocampus as well as with the CA1 subfield, subiculum, and molecular layer. Participants showing higher subcortical Aβ also showed worse cognitive performance and smaller hippocampal volumes. In contrast, global and cortical PiB uptake did not associate with any subcortical metrics. This study shows that subcortical Aβ is associated with subcortical surface morphology in cognitively normal individuals. This study highlights the importance of quantifying subcortical regional PiB retention values in these individuals
    corecore