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Abstract

Cerebral spinal fluid (CSF) and structural imaging markers are suggested as biomarkers amended to existing diagnostic
criteria of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). But there is no clear instruction on which markers
should be used at which stage of dementia. This study aimed to first investigate associations of the CSF markers as well as
volumes and shapes of the hippocampus and lateral ventricles with MCI and AD at the baseline and secondly apply these
baseline markers to predict MCI conversion in a two-year time using the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort. Our results suggested that the CSF markers, including Ab42, t-tau, and p-tau, distinguished MCI or AD from NC,
while the Ab42 CSF marker contributed to the differentiation between MCI and AD. The hippocampal shapes performed
better than the hippocampal volumes in classifying NC and MCI, NC and AD, as well as MCI and AD. Interestingly, the
ventricular volumes were better than the ventricular shapes to distinguish MCI or AD from NC, while the ventricular shapes
showed better accuracy than the ventricular volumes in classifying MCI and AD. As the CSF markers and the structural
markers are complementary, the combination of them showed great improvements in the classification accuracies of MCI
and AD. Moreover, the combination of these markers showed high sensitivity but low specificity for predicting conversion
from MCI to AD in two years. Hence, it is feasible to employ a cross-sectional sample to investigate dynamic associations of
the CSF and imaging markers with MCI and AD and to predict future MCI conversion. In particular, the volumetric
information may be good for the early stage of AD, while morphological shapes should be considered as markers in the
prediction of MCI conversion to AD together with the CSF markers.
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Introduction

Cerebral spinal fluid (CSF) and imaging markers have been

suggested as biomarkers to augment existing diagnostic criteria of

both mild cognitive impairment (MCI) and Alzheimer’s disease

(AD) [1,2,3,4,5,6]. Jack et al. [7] proposed a possible hypothetical

model in which biomarkers were temporally arranged in order of

abnormality along the pathological cascade of AD. In this model,

abnormal CSF Ab42 could occur two decades before the first

dementia-related symptoms, reaching a plateau prior any mani-

festation of cognitive impairment. In comparison to trajectories of

CSF tau, magnetic resonance imaging (MRI) markers surfaced

much later and were well correlated with the severity of AD

symptoms. However, this hypothetical model was directly derived

from longitudinal studies, where statistical inferences were founded

primarily on the rate of change of AD-related biomarkers over

time. For instance, increased rates of ventricular expansion and

brain atrophy in the medial temporal lobe were found to be

significantly correlated with cognitive decline, with good predic-

tions for MCI to AD conversion [8] [9] [10].

Beyond simple volumetric measures, morphological shape of the

brain captures not only the degree of tissue loss but also its precise

anatomical location. As such, brain shape measures have since

been suggested as improved predictors for MCI conversion to AD.

For instance, changes of hippocampal shapes between baseline

and a 2-year follow-up predicted MCI-AD conversion up to 80%

accuracy [11,12]. Unfortunately, to date, no clear, authoritative

instruction on which structural MRI measures are to be associated

with MCI and AD is available. This could be, partly, a result of the

extensive variety of image analysis techniques available. In

addition, while recent studies [13,14] have tested the feasibility

of baseline structural volumes and CSF in predicting conversion

from MCI to AD, performance of baseline structural shapes with

CSF markers for MCI-AD conversion remains relatively un-

known.

In this paper, we first evaluated the hypothetical model

suggested by Jack et al. [7] through a cross-sectional study on

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort.

For this, we employed a supervised, multivariate classification

method, support vector machine (SVM), to distinguish MCI and

AD from normal aging. Features used include CSF biomarkers

and the shapes and volumes of hippocampus and lateral ventricles.

The hippocampi and lateral ventricles were chosen for their well-

validated status as prominent hallmarks of AD

[8,15,16,17,18,19,20]. Subsequently, we aim to predict MCI

conversion to AD over a two-year follow-up period using baseline
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CSF and MRI measures. In particular, both volumetric and shape

analyses were applied to compare their sensitivity and specificity in

the prediction of MCI conversion to AD.

Methods

The ADNI was launched in 2003 by the National Institute on

Aging (NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration [21],

private pharmaceutical companies and non-profit organizations,

as a $60 million, 5-year public–private partnership. The primary

goal of ADNI has been to test whether serial MRI, PET, other

biological markers, and clinical and neuropsychological assess-

ments can be combined to measure the progression of MCI and

early AD. Determination of sensitive and specific markers of very

early AD progression is intended to aid researchers and clinicians

to develop new treatments and monitor their effectiveness, as well

as lessen the time and cost of clinical trials.

ADNI is the result of efforts of many coinvestigators from a

broad range of academic institutions and private corporations, and

subjects have been recruited from over 50 sites across the U.S. and

Canada. The initial goal of ADNI was to recruit 800 adults, ages

55 to 90, to participate in the research — approximately 200

cognitively normal older individuals to be followed for 3 years, 400

people with MCI to be followed for 3 years, and 200 people with

early AD to be followed for 2years (see www.adni-info.org for up-

to-date information). The data were analyzed anonymously, using

publicly available secondary data from the ADNI study, therefore

no ethics statement is required for this work.

Subjects
The ADNI general eligibility criteria are described at www.

adni- info.org. Briefly, subjects are between 55–90 years of age,

having a study partner able to provide an independent evaluation

of functioning. Specific psychoactive medications will be excluded.

General inclusion/exclusion criteria are as follows: 1) healthy

subjects: Mini- Mental State Examination (MMSE) scores between

24–30, a Clinical Dementia Rating (CDR) of 0, non-depressed,

non-MCI, and nondemented; 2) MCI subjects: MMSE scores

between 24–30, a memory complaint, having objective memory

loss measured by education adjusted scores on Wechsler Memory

Scale Logical Memory II, a CDR of 0.5, absence of significant

levels of impairment in other cognitive domains, essentially

preserved activities of daily living, and an absence of dementia;

and 3) mild AD: MMSE scores between 20–26, CDR of 0.5 or 1.0,

and meets the National Institute of Neurological and Communi-

cative Disorders and Stroke and the Alzheimer’s Disease and

Related Disorders Association (NINCDS/ADRDA) criteria for

probable AD.

In this study, 383 subjects were chosen from our previous study

[22]. Within this group, 218 have both MRI and CSF baseline

data (age: 74.467.2 years), with 72 normal controls (NC), 35 AD

subjects, and 111 MCI patients. Amongst these 383 subjects, 25

subjects with MCI converted to AD within 24 months.

Structural MR scans were collected across a variety of scanners

with protocols individualized for each scanner, as defined at www.

loni.ucla.edu/ADNI/Research/Cores/index.shtml. The CSF

Ab42, t-tau and p-tau data were downloaded from the ADNI

web site (www.loni.ucla.edu/ADNI).

MRI analysis
Figure 1 illustrates the MRI data processing that is detailed

below.

Structural Delineation. We automatically delineated the

hippocampus (HC) and lateral ventricles (LV) from the intensity

inhomogeneity corrected T1-weighted MR images using Free-

Surfer [23]. Due to the lack of constraints on structural shapes, this

process introduced irregularities and topological errors (e.g. holes)

at the hippocampal and ventricular boundary. This would increase

shape variation and thus reduces statistical power to detect group

differences. To avoid this pitfall, we generated the hippocampal or

ventricular shape of each individual subject with the properties of

smoothness and correct topology by injecting an atlas shape into

them using the large deformation diffeomorphic metric image

mapping algorithm [24]. The hippocampal and lateral ventricular

atlas shapes were created from 41 manually labeled hippocampi

and lateral ventricles via a large deformation diffeomorphic atlas

generation algorithm [25]. Each hippocampal (or lateral ventric-

ular) volume was approximated by the transformed atlas through

the LDDMM transformation. The reader is referred to [26] for

the mathematical derivation of this atlas injection procedure and

its evaluation as well as the segmentation accuracy on the

hippocampus and lateral ventricles. This delineation approach has

been successfully applied to investigate the hippocampus and other

subcortical shapes in AD [22].

We constructed the surface representation of the hippocampus

and lateral ventricles by composing the LDDMM transformation

on the corresponding atlas surfaces [27]. The left and right

hippocampal surfaces were respectively constructed using 2364

triangles with 1184 vertices and 2458 triangles with 1231 vertices,

while the left and right lateral ventricular surfaces were

respectively composed of 6966 triangles with 3485 vertices and

7890 triangles with 3947 vertices. The average triangle area and

edge length of the hippocampal surfaces were respectively

0.59 mm2 and 1.2 mm, while those of the ventricular surfaces

were respectively 0.64 mm2 and 1.1 mm. Hence, the size of the

triangles was comparable to the image resolution (1 mm3).

ISOMAP Shape Embedding. Unlike the scalar volume

measure, structural shapes lie on a high dimensional space, which

makes it challenging for statistical inference. In this study, we

employed ISOMAP [28] to embed the shapes of the hippocampus

and lateral ventricles into a Euclidean space with a few dimensions

such that this low-dimensional embedding is quasi-isometric to the

shapes in the high dimensional space. For this, we first computed

diffeomorphic metric distances between any two shapes using their

first order approximation described in [29] and constructed a pair-

wise distance matrix. ISOMAP then found a Euclidean low-

dimensional representation of the shapes that preserved the

relationship of any two shapes described in the pair-wise distance

matrix. These Euclidean coordinates were obtained by finding

eigenvectors corresponding to the largest eigenvalues of the kernel

matrix stemmed from the distance matrix reshaped by a centering

matrix [28]. The dimension of the eigenvectors is the same as the

number of subjects, and each eigenvector is one component or one

dimension of the ISOMAP shape embedding. Using this approach

with all 383 subjects, the bilateral hippocampal shapes can be

characterized using the first 20 ISOMAP components whose

Euclidean distance matrix is highly correlated with the pair-wise

metric distance matrix generated using the first order approxima-

tion of the diffeomorphic metric (Pearson’s Correlation: r = 0.91).

The bilateral lateral ventricular shapes can be represented using

the first 20 ISOMAP components whose Euclidean distance

matrix is very much similar to the pair-wise metric distance matrix

(Pearson’s Correlation: r = 0.97).

CSF and Brain Shapes in MCI and AD
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Statistical Analysis
A linear support vector machine (SVM) [30] was employed to

identify diagnosis of subjects from any two groups (NC, MCI, and

AD). The SVM classifier seeks the optimal decision boundary that

has a maximal margin closest to the training samples such that

generalization error bound can be minimized. Hence, the SVM

classifier is robust to outliers. In our study, we independently and

jointly considered volumes (or shapes) of the hippocampus, lateral

ventricles and CSF markers as the SVM input features to identify

subjects with MCI and AD from NC and MCI from AD. Shape

features comprise only of ISOMAP components with significant

group differences based on Student t-tests.

Our study had fewer AD subjects as compared to the NC or

MCI groups. To resolve any influences of unequal sample sizes

among the NC, MCI, and AD groups on the classification

accuracy, we employed random sampling to reduce the number of

NC and MCI subjects such that all three groups have equal sample

sizes. This was repeated for 100 times. For each trial, leave-one-

out cross-validation was adopted to estimate the classification

accuracy. The confidence interval of the classification accuracy

was computed.

Moreover, we also applied the SVM to test the sensitivity and

specificity for predicting MCI conversion in a two-year time

window when volumes (or shapes) of the hippocampus and lateral

ventricles as well as CSF markers assessed at the baseline were

independently or jointly considered as features in the SVM.

Results

Demographic Information
Demographic information for different diagnosis groups at

baseline are shown in Table 1. No significant differences in age

were found among the NC, MCI, and AD groups (ANOVA,

p = 0.454). 25 out of 111 MCI subjects were diagnosed as AD at

the two-year follow up and were denoted as the MCI-c group.

Rest of the MCI subjects were placed in the MCI-s group. No

significant MMSE difference was found between the two MCI

groups at baseline (p = 0.10).

Markers at Stages of MCI an AD
Hippocampal volume and shape markers. Bilateral hip-

pocampal volumes distinguished MCI and AD subjects from

normal controls at an accuracy of 61.9% and 65.5% respectively,

with relatively high specificity (MCI: 66.1%; AD: 73.3%) but low

sensitivity (MCI: 57.7%; AD: 57.8%) (Table 2). However, the

hippocampal volumes lost statistical power in the separation of

subjects with MCI and AD (classification accuracy: 42.3%;

sensitivity: 45.3%; specificity: 39.2%, Table 2).

In shape analysis, the first 20 ISOMAP components character-

ized bilateral hippocampal shapes among all 383 subjects. The 1st,

2nd, 3rd, 4th, 9th, 13th, 18th components contributed to hippocam-

pal shape differences between NC and AD. Among these

components, most of them (the 1st, 2nd, 3rd, 7th, 13th) also

contributed to shape differences between NC and MCI (Table 3).

Interestingly, only the 4th and 9th components showed shape

differences between MCI and AD. Moreover, among these

ISOMAP components, the 1st and 2nd components were highly

correlated with the hippocampal volume (Pearson correlations:

r = 0.7, p,0.01 for the 1st component; r = 0.5, p,0.01 for the 2nd

component), which were dominant components for group

differences in hippocampal shapes between NC and MCI. This

is illustrated as relatively homogeneous shrinkage over the bilateral

hippocampi in Figure 2 (a,b). But the 4th and 9th components

were not associated with the hippocampal volume (p.0.05),

suggesting that only local hippocampal shapes contributed to the

difference between MCI and AD, as seen in Figure 2 (c,d). This

can be further supported by evidence of increased classification

accuracy rates for the classifications between NC and AD (79.2%),

NC and MCI (67.4%), and MCI and AD (57.2%) (Table 2) when

the ISOMAP embedding of hippocampal shapes were used in the

SVM classifiers.

Lateral ventricular volume and shape markers. The

volumes of bilateral lateral ventricles distinguished subjects with

MCI and AD from normal controls at the accuracy of 63.1% and

65.5% respectively, with relatively high specificity (MCI: 75.3%;

AD: 72.3%) but low sensitivity (MCI: 50.9%; AD: 58.8%)

(Table 2). However, volumes of the lateral ventricles lost statistical

Figure 1. Schematic of MRI data processing.
doi:10.1371/journal.pone.0047406.g001

CSF and Brain Shapes in MCI and AD
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power in separating subjects with MCI and AD (classification

accuracy: 30.4%; sensitivity: 21.2%; specificity: 39.7%, Table 2).

In shape analysis, the first 20 ISOMAP components character-

ized bilateral lateral ventricular shapes among all 383 subjects.

The 1st, 7th, 8th, 9th, 17th, 19th components contributed to

hippocampal shape differences between NC and AD. Among

these components, several of them (the 1st, 8th) also contributed to

shape differences between NC and MCI (Table 3). Interestingly,

only the 9th, 13th, and 17th components showed the shape

differences between MCI and AD. Moreover, among these

ISOMAP components, the 1st component was highly correlated

with the ventricular volume (Pearson correlations: r = 0.98,

p,0.01), though it was not the only component contributing to

shape differences between NC and MCI, as illustrated in Figure 3
(a,b). However, the 9th, 13th, and 17th components were not

associated with the lateral ventricular volume (p.0.05), suggesting

that only local ventricular shapes contributed to the difference

between MCI and AD. This can also be seen in Figure 3 (c,d).
Unlike the hippocampus, the lateral ventricular shapes did not

lead to better classification accuracy rates between NC and AD

(61.5%), and between NC and MCI (59%) when compared with

the lateral ventricular volumes (see Table 2). However, the

ventricular shapes achieved markedly better accuracy in distin-

guishing MCI and AD (60.1%) (Table 2).

CSF Markers. Student’s t-tests revealed that all three CSF

markers, Ab42, t-tau, and p-tau, showed statistically significant

differences between NC and AD and between NC and MCI

(Table 3). However, only Ab42 showed group differences

between MCI and AD (Table 3). The SVM classification

revealed that the CSF markers can distinguish NC and AD at

the classification accuracy of 81.4%, higher than those based on

the hippocampal or ventricular imaging markers (Table 2).

Additionally, the CSF markers achieved similar accuracy in

distinguishing NC and MCI, and MCI and AD subjects in

comparison with hippocampal and ventricular shapes. Interest-

ingly, the CSF markers gave higher sensitivities than the imaging

markers (Table 2).

The combination of the Imaging and CSF

Markers. Combining the CSF markers and the volumes of

the hippocampus and lateral ventricles as features in the SVM

Table 1. Demographic information for each of the diagnosis groups (normal controls (NC), mild cognitive impairment (MCI), and
Alzheimer’s disease (AD)) at the baseline.

Group Subjects n Age (mean±SD) Gender (female/male) MMSE (mean±SD)

NC 72 75.265.2 35/37 2961

MCI-s 86 7467.7 28/58 26.761.8

MCI-c 25 73.566.9 6/19 26.161.5

AD 35 74.669.3 15/20 22.961.8

Note: SD – standard deviation; MMSE – mini-mental state examination; MCI-s – subjects with MCI who remained as MCI at the two-year follow up; MCI-c – subjects with
MCI who converted as AD at the two-year follow up.
doi:10.1371/journal.pone.0047406.t001

Table 2. The classification accuracy, sensitivity, and specificity of the support vector machine (SVM) classifiers are given for
distinguishing normal controls (NC) and subjects with Alzheimer’s disease (AD), NC and subjects with mild cognitive impairment
(MCI), and subjects with MCI and AD.

NC.vs. AD NC.vs. MCI MCI.vs. AD

Hippocampal Volumes and Shapes

Hp volumes 65.5% (CI: 64.4%,66.6%)
Sensitivity = 57.8%, Specificity = 73.3%

61.9% (CI: 61%,62.8%)
Sensitivity = 57.7%, Specificity = 66.1%

42.3% (CI:32.2%,52.3%)
Sensitivity = 45.3%, Specificity = 39.2%

Hp shapes 79.2% (CI: 78.5%,80%)
Sensitivity = 75.8%, Specificity = 82.8%

67.4% (CI: 66.2%,68.6%)
Sensitivity = 64%, Specificity = 70.8%

57.2% (CI: 51.7%,62.8%)
Sensitivity = 59.9%, Specificity = 54.5%

Lateral Ventricular Volumes and Shapes

LV volumes 65.5% (CI: 64.9%,66.1%)
Sensitivity = 58.8% Specificity = 72.3%

63.1% (CI: 62%,64.2%)
Sensitivity = 50.9%, Specificity = 75.3%

30.4% (CI: 18.8%,42%)
Sensitivity = 21.2% Specificity = 39.7%

LV shapes 61.5% (CI: 59.2%,63.9%)
Sensitivity = 59.2%, Specificity = 63.9%

59% (CI: 56.1%,62%)
Sensitivity = 53.6%, Specificity = 64.4%

60.1% (CI:57.1%,63.1%)
Sensitivity = 62%, Specificity = 58.3%

CSF

CSF markers 81.4% (CI: 80.3%,82.5%)
Sensitivity = 87.4%, Specificity = 74.9%

68.4% (CI: 67.8%,69%)
Sensitivity = 66.7%, Specificity = 70.1%

61.3% (CI: 59.4%,63.2%)
Sensitivity = 84.3%, specificity = 38.3%

Combination

CSF, Hp volumes,
LV volumes

85.4% (CI: 84.3%,86.5%)
Sensitivity = 88.8%, Specificity = 82%

72% (CI: 70.5%,73.5%)
Sensitivity = 70.1%, Specificity = 73.9%

60.9% (CI: 59.1%,62.8%)
Sensitivity = 80.4%, Specificity = 41.4%

CSF, Hp shapes,
LV shapes

92.2% (CI: 91%,93.5%)
Sensitivity = 94.7%, Specificity = 89.8%

70.3% (CI: 68.6%,72.9%)
Sensitivity = 69.5%, specificity = 71.9%

69.6% (CI: 66.4%,72.8%)
Sensitivity = 70.7%, Specificity = 68.6%

The volumes and shapes of the hippocampus (Hp) and lateral ventricles (LV) as well as cerebral spinal fluid (CSF) markers are respectively used as features in the SVM.
doi:10.1371/journal.pone.0047406.t002

CSF and Brain Shapes in MCI and AD
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increased the classification accuracies between NC and AD

(85.4%) and between NC and MCI (72%) when compared to

those achieved using only one type of markers (see Table 2).

Nevertheless, there was no improvement on the classification

accuracy between MCI and AD when compared with that using

the CSF markers alone.

Combining the CSF markers and the shapes of the hippocam-

pus and lateral ventricles as features in the SVM increased the

classification accuracies between NC and AD (92.2%), between

NC and MCI (70.3%), and between MCI and AD (69.6%) when

compared to those achieved using only one type of the markers

(see Table 2).

Shapes of the two structures with the CSF markers performed

better in separating NC and MCI (p,0.001) or NC and AD

(p,0.001) when compared to features combining the volumes and

CSF markers. However, shapes of the two structures with the CSF

markers performed worse in separating NC and MCI when

compared to features combining the volumes and CSF markers

(p = 0.013).

Prediction of the MCI Conversion
To predict MCI conversion at a two-year follow-up, we trained

an NC and AD classifier using the CSF and imaging markers

before applying it to the 25 MCI converters and 86 MCI non-

converters. Again, combination of the CSF markers with the

hippocampus and lateral ventricles shapes at baseline showed the

best prediction (66.7%) and sensitivity (82%) for identifying the

MCI converters when compared to individual imaging or CSF

markers (Table 4).

Discussion

Our study demonstrated the dynamic trajectories of the CSF,

hippocampal and lateral ventricular markers in the Alzheimer’s

pathological cascade using a cross-sectional ADNI sample and also

showed the feasibility of predicting future MCI-to-AD conversion

using baseline CSF and imaging markers. The CSF markers,

including Ab42, t-tau, and p-tau, distinguished MCI or AD from

NC, while only the Ab42 CSF marker contributed to the

differentiation between MCI and AD. The hippocampal shapes

performed better than the hippocampal volumes in classifying NC

and MCI, NC and AD, as well as MCI and AD. Interestingly, as

compared to the ventricular shape, ventricular volume performed

better in distinguishing MCI or AD from NC. The ventricular

shape, however, showed better accuracy in the classification for

MCI and AD. As the CSF and structural markers were

complementary, their combination showed great improvement

in the classification accuracies at all the stages of AD. Moreover,

the combination of these baseline markers also showed high

sensitivity but low specificity for predicting MCI conversion to AD

during a two-year period.

Our findings supported the conclusion drawn in previous

studies [31]; [32], where abnormality of both CSF Ab42 and

neurodegenerative biomarkers, including CSF tau and MRI

markers, precedes clinical symptoms; all these markers showed

significant differences between NC and MCI groups. However,

our findings did not support the hypothesis where CSF Ab42

reaches a plateau before the appearance of MRI atrophy and

cognitive symptoms, and remain static thereafter [7]. In our study,

CSF Ab42 continued to show appreciable power discriminant

between MCI and AD. In contrast, CSF tau lost its discriminating

power in distinguishing MCI and AD patients, suggesting that

CSF Ab42 reaches its plateau after CSF tau in the Alzheimer’s

pathological cascade.

MCI and AD patients were not well-separated using hippo-

campal volume, implying that the overall tissue loss in the

hippocampus may not be a good marker for monitoring AD

progression. However, we may not conclude that the hippocampus

Figure 2. Hippocampal shape differences among normal
controls (NC), mild cognitive impairment (MCI), and Alzhei-
mer’s Disease (AD). Panels (a,b) respectively show group differences
in the left and right hippocampal surface deformations between MCI
and NC. Panels (c,d) respectively show group differences in the left and
right hippocampal surface deformations between AD and MCI. Warm
color denotes regions where structures have surface outward-defor-
mation in the former group when compared with the latter group,
while cool color denotes regions where structures have surface inward-
deformation in the former group when compared with the latter group.
doi:10.1371/journal.pone.0047406.g002

Table 3. ISOMAP components of the hippocampus and lateral ventricles as well as CSF markers contribute to the group
differences between normal controls (NC) and subjects with Alzheimer’s disease (AD), NC and subjects with mild cognitive
impairment (MCI), and subjects with MCI and AD.

NC.vs. AD NC.vs. MCI MCI vs AD

Imaging Markers

ISOMAP components ISOMAP components ISOMAP components

hippocampal shapes 1,2,3,4,9,13,18 1,2,3,7,13 4,9

lateral ventricular shapes 1,7,8,9,17,19 1,8,12,14 9, 13,17

CSF Markers

CSF Ab42, t-tau, p-tau Ab42, t-tau, p-tau Ab42, t-tau, p-tau Ab42

doi:10.1371/journal.pone.0047406.t003

CSF and Brain Shapes in MCI and AD
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reached its abnormality peak before the late stage of AD, as its

local shape variations were significantly associated with progres-

sion from MCI to AD. Our results also showed that such local

shape markers aided the hippocampal markers in achieving

slightly better accuracy than the CSF markers in the prediction for

MCI conversion to AD. This was also supported by previous

studies, suggesting that MRI markers (e.g. cortical thickness of the

medial temporal lobe) correlate well with severity of cognitive

impairment and have greater predictive power than the CSF tau

[33]. Based on these evidences, we may conclude that the

hippocampal shape marker reaches its plateau after CSF tau.

However, the order in which the CSF Ab42 and MRI markers

reach their abnormality peaks is still unclear based on our current

study.

The volume of the lateral ventricles cannot distinguish MCI and

AD patients. Interestingly, the overall expansion of the lateral

ventricles showed better performance in identifying MCI or AD

from NC when compared with their shapes. This result agrees

with previous studies, suggesting that rates of ventricular

expansion were significantly different between AD (or MCI) and

NC groups [8]. This implies that complicated shape analysis might

not always be necessary to provide better structural morphological

markers when compared to volumetric analysis. Even for the same

structure, its markers can be different at different stages of AD.

Again, we may not conclude that the lateral ventricles reached

their abnormality peak before the late stage of AD, as their local

shape variations were significantly associated with progression

from MCI to AD. Likewise, ventricular shape markers slightly

outperformed CSF markers in the prediction for MCI conversion

to AD, as verified by previous studies [34], wherein clearer

correlation was observed for ventricular volumes against worsen-

ing cognitive indices, as compared to CSF biomarkers.

Our study showed that the CSF and structural markers are

complementary to each other in the AD pathological cascade.

This suggests that the CSF markers, (Ab42, t-tau, and p-tau) with

the volumes of the hippocampus and lateral ventricles, is a good

combination for distinguishing NC and MCI, while CSF Ab42

marker with the shape of the hippocampus and lateral ventricles is

a good combination for identifying MCI and AD.

As the shapes of the hippocampus and lateral ventricles

contributed more to the difference between MCI and AD than

their volumes, our study further showed that the combination of

the CSF markers and the shapes of the two structures at baseline

predicted MCI conversion to AD in the two-year follow up at an

Figure 3. Shape differences of the lateral ventricles among normal controls (NC), mild cognitive impairment (MCI), and Alzheimer’s
Disease (AD). Panels (a,b) respectively show group differences in the left and right lateral ventricular surface deformations between MCI and NC.
Panels (c,d) respectively show group differences in the left and right lateral ventricular surface deformations between AD and MCI. Warm color
denotes regions where structures have surface outward-deformation in the former group when compared with the latter group, while cool color
denotes regions where structures have surface inward-deformation in the former group when compared with the latter group.
doi:10.1371/journal.pone.0047406.g003

Table 4. The accuracy, sensitivity, and specificity for predicting the MCI converters are listed when the volumes or shapes of the
hippocampus (Hp) or the lateral ventricles (LV), or the CSF markers, or their combination were used as features in the classification.

Markers Accuracy (95% CI) Sensitivity Specificity

Hippocampal volumes and Shapes

Hp volumes 54%(53.1%,54.9%) 54.4% 53.6%

Hp shapes 63%(62.1%,64%) 74.9% 51.2%

Lateral Ventricular Volumes and Shapes

LV volumes 55.6%(54.7%,56.5) 63.7% 47.5%

LV shapes 62.7%(61.5%,63.9%) 67.9% 57.5%

CSF

CSF markers 62.2%(61.3%,63.1%) 80.4% 44%

Combination

CSF, Hp volumes, LV volumes 59.2%(58.3%,60%) 81.1%(80.5%,81.6%) 37.2%(35.6%,38.9%)

CSF, Hp shapes, LV shapes 66.7%(65.7%,67.8%) 82%(81.5%,82.6%) 51.4% (49.4%,53.3%)

doi:10.1371/journal.pone.0047406.t004

CSF and Brain Shapes in MCI and AD

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e47406



improved accuracy of 66.7%. Previous studies [35] achieved

similar prediction accuracy (68.5%) for the MCI conversion within

a three-year follow up, with suggestions claiming that multiple

predictors, including the CSF markers, hippocampal volume,

entorhinal cortex thickness, etc. would not perform better than a

single predictor. This differs from the conclusion derived from our

findings, possibly because structural shape measures contain more

complementing features than structural volume measures. The

combination of the shapes and CSF markers achieved high

classification accuracy (92.2%) between NC and AD, improving

by more than 10% over the CSF markers. This result is

comparable to those previously reported where CSF, MRI and

PET imaging markers were combined [36].

In summary, we conclude that it is feasible to employ a cross-

sectional sample to investigate dynamic associations of the CSF

and imaging markers with MCI and AD and to predict future

MCI conversion to AD. In particular, volumetric information may

be good for the early stages of AD while morphological shapes

should be considered as markers in the prediction of MCI

conversion to AD together with the CSF markers.
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