267 research outputs found

    Energy-resolved electron-spin dynamics at surfaces of p-doped GaAs

    Full text link
    Electron-spin relaxation at different surfaces of p-doped GaAs is investigated by means of spin, time and energy resolved 2-photon photoemission. These results are contrasted with bulk results obtained by time-resolved Faraday rotation measurements as well as calculations of the Bir-Aronov-Pikus spin-flip mechanism. Due to the reduced hole density in the band bending region at the (100) surface the spin-relaxation time increases over two orders of magnitude towards lower energies. At the flat-band (011) surface a constant spin relaxation time in agreement with our measurements and calculations for bulk GaAs is obtained.Comment: 6 pages, 4 figure

    A model for single electron decays from a strongly isolated quantum dot

    Get PDF
    Recent measurements of electron escape from a non-equilibrium charged quantum dot are interpreted within a 2D separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation.Comment: 9 pages, 10 figure

    Symmetric Versus Nonsymmetric Structure of the Phosphorus Vacancy on InP(110)

    Full text link
    The atomic and electronic structure of positively charged P vacancies on InP(110) surfaces is determined by combining scanning tunneling microscopy, photoelectron spectroscopy, and density-functional theory calculations. The vacancy exhibits a nonsymmetric rebonded atomic configuration with a charge transfer level 0.75+-0.1 eV above the valence band maximum. The scanning tunneling microscopy (STM) images show only a time average of two degenerate geometries, due to a thermal flip motion between the mirror configurations. This leads to an apparently symmetric STM image, although the ground state atomic structure is nonsymmetric.Comment: 5 pages including 3 figures. related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Fermi-level alignment at metal-carbon nanotube interfaces: application to scanning tunneling spectroscopy

    Full text link
    At any metal-carbon nanotube interface there is charge transfer and the induced interfacial field determines the position of the carbon nanotube band structure relative to the metal Fermi-level. In the case of a single-wall carbon nanotube (SWNT) supported on a gold substrate, we show that the charge transfers induce a local electrostatic potential perturbation which gives rise to the observed Fermi-level shift in scanning tunneling spectroscopy (STS) measurements. We also discuss the relevance of this study to recent experiments on carbon nanotube transistors and argue that the Fermi-level alignment will be different for carbon nanotube transistors with low resistance and high resistance contacts.Comment: 4 pages, 3 ps figures, minor corrections, accepted by Phys. Rev. Let

    Charge density waves and surface Mott insulators for adlayer structures on semiconductors: extended Hubbard modeling

    Full text link
    Motivated by the recent experimental evidence of commensurate surface charge density waves (CDW) in Pb/Ge(111) and Sn/Ge(111) sqrt{3}-adlayer structures, as well as by the insulating states found on K/Si(111):B and SiC(0001), we have investigated the role of electron-electron interactions, and also of electron-phonon coupling, on the narrow surface state band originating from the outer dangling bond orbitals of the surface. We model the sqrt{3} dangling bond lattice by an extended two-dimensional Hubbard model at half-filling on a triangular lattice. We include an on-site Hubbard repulsion U and a nearest-neighbor Coulomb interaction V, plus a long-ranged Coulomb tail. The electron-phonon interaction is treated in the deformation potential approximation. We have explored the phase diagram of this model including the possibility of commensurate 3x3 phases, using mainly the Hartree-Fock approximation. For U larger than the bandwidth we find a non-collinear antiferromagnetic SDW insulator, possibly corresponding to the situation on the SiC and K/Si surfaces. For U comparable or smaller, a rich phase diagram arises, with several phases involving combinations of charge and spin-density-waves (SDW), with or without a net magnetization. We find that insulating, or partly metallic 3x3 CDW phases can be stabilized by two different physical mechanisms. One is the inter-site repulsion V, that together with electron-phonon coupling can lower the energy of a charge modulation. The other is a novel magnetically-induced Fermi surface nesting, stabilizing a net cell magnetization of 1/3, plus a collinear SDW, plus an associated weak CDW. Comparison with available experimental evidence, and also with first-principle calculations is made.Comment: 11 pages, 9 figure

    Stationary states and phase diagram for a model of the Gunn effect under realistic boundary conditions

    Get PDF
    A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly stablished.Comment: 10 pages, 6 Post-Script figure

    Spin- and energy relaxation of hot electrons at GaAs surfaces

    Full text link
    The mechanisms for spin relaxation in semiconductors are reviewed, and the mechanism prevalent in p-doped semiconductors, namely spin relaxation due to the electron-hole exchange interaction, is presented in some depth. It is shown that the solution of Boltzmann-type kinetic equations allows one to obtain quantitative results for spin relaxation in semiconductors that go beyond the original Bir-Aronov-Pikus relaxation-rate approximation. Experimental results using surface sensitive two-photon photoemission techniques show that the spin relaxation-time of electrons in p-doped GaAs at a semiconductor/metal surface is several times longer than the corresponding bulk spin relaxation-times. A theoretical explanation of these results in terms of the reduced density of holes in the band-bending region at the surface is presented.Comment: 33 pages, 12 figures; earlier submission replaced by corrected and expanded version; eps figures now included in the tex

    Equilibrium shapes and energies of coherent strained InP islands

    Get PDF
    The equilibrium shapes and energies of coherent strained InP islands grown on GaP have been investigated with a hybrid approach that has been previously applied to InAs islands on GaAs. This combines calculations of the surface energies by density functional theory and the bulk deformation energies by continuum elasticity theory. The calculated equilibrium shapes for different chemical environments exhibit the {101}, {111}, {\=1\=1\=1} facets and a (001) top surface. They compare quite well with recent atomic-force microscopy data. Thus in the InP/GaInP-system a considerable equilibration of the individual islands with respect to their shapes can be achieved. We discuss the implications of our results for the Ostwald ripening of the coherent InP islands. In addition we compare strain fields in uncapped and capped islands.Comment: 10 pages including 6 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Simultaneous multi-frequency observation of the unknown redshift blazar PG 1553+113 in March-April 2008

    Get PDF
    The blazar PG 1553+113 is a well known TeV gamma-ray emitter. In this paper, we determine its spectral energy distribution using simultaneous multi-frequency data in order to study its emission processes. An extensive campaign was carried out between March and April 2008, where optical, X-ray, high-energy (HE) gamma-ray, and very-high-energy (VHE) gamma-ray data were obtained with the KVA, Abastumani, REM, RossiXTE/ASM, AGILE and MAGIC telescopes, respectively. This is the first simultaneous broad-band (i.e., HE+VHE) gamma-ray observation, though AGILE did not detect the source. We combine data to derive source's spectral energy distribution and interpret its double peaked shape within the framework of a synchrotron self compton modelComment: 5 pages, 2 figures, publishe
    • …
    corecore