85 research outputs found

    Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps)

    Get PDF
    Abstract. The amount of reflected energy by snow and ice plays a fundamental role in their melting processes. Different non-ice materials (carbonaceous particles, mineral dust (MD), microorganisms, algae, etc.) can decrease the reflectance of snow and ice promoting the melt. The object of this paper is to assess the capability of field and satellite (EO-1 Hyperion) hyperspectral data to characterize the impact of light-absorbing impurities (LAIs) on the surface reflectance of ice and snow of the Vadret da Morteratsch, a large valley glacier in the Swiss Alps. The spatial distribution of both narrow-band and broad-band indices derived from Hyperion was analyzed in relation to ice and snow impurities. In situ and laboratory reflectance spectra were acquired to characterize the optical properties of ice and cryoconite samples. The concentrations of elemental carbon (EC), organic carbon (OC) and levoglucosan were also determined to characterize the impurities found in cryoconite. Multi-wavelength absorbance spectra were measured to compare the optical properties of cryoconite samples and local moraine sediments. In situ reflectance spectra showed that the presence of impurities reduced ice reflectance in visible wavelengths by 80–90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier, revealing that seasonal input of atmospheric dust can decrease the reflectance also in the accumulation zone of the glacier. The presence of EC and OC in cryoconite samples suggests a relevant role of carbonaceous and organic material in the darkening of the ablation zone. This darkening effect is added to that caused by fine debris from lateral moraines, which is assumed to represent a large fraction of cryoconite. Possible input of anthropogenic activity cannot be excluded and further research is needed to assess the role of human activities in the darkening process of glaciers observed in recent years

    Deep ice as a geochemical reactor: Insights from iron speciation and mineralogy of dust in the Talos Dome ice core (East Antarctica)

    Get PDF
    Thanks to its insolubility, mineral dust is considered a stable proxy in polar ice cores. With this study we show that the Talos Dome ice core (TALDICE, Ross Sea sector of East Antarctica) displays evident and progressive signs of post-depositional processes affecting the mineral dust record below 1000g m deep. We apply a suite of established and cutting-edge techniques to investigate the properties of dust in TALDICE, ranging from concentration and grain size to elemental composition and Fe mineralogy. Results show that through acidic/oxidative weathering, the conditions of deep ice at Talos Dome promote the dissolution of specific minerals and the englacial formation of others, affecting primitive dust features. The expulsion of acidic atmospheric species from ice grains and their concentration in localized environments is likely the main process responsible for englacial reactions. Deep ice can be seen as a "geochemical reactor"capable of fostering complex reactions which involve both soluble and insoluble impurities. Fe-bearing minerals can efficiently help in exploring such transformations

    Mineralogical study of rodingitized microgabbros and associated chromitite seams from the Nain ophiolite, Central Iran

    Get PDF
    The Nain-Dehshir-Baft Ophiolitic Belt (NDBOB), which crops out along the Nain-Baft fault, around the Central Iranian Microcontinent (CIM), comprises a set of dismembered ultramafic, mafic and sedimentary complexes. The northernmost branch of this ophiolitic belt is known as \u201cNain ophiolitic m\ue9lange\u201d and hosts small chromitite bodies, as pods and lenses, within completely serpentinized peridotites. The focus of the present study is the interaction between a 50 cm thick chromitite lens and a crosscutting rodingite dyke. For this purpose, a full transect across chromitite, rodingite and serpentinite was continuously sampled and studied in reflected and transmitted light microscopy. Mineral chemistry of sulfides, silicates, carbonates and oxydes was determined through EMP analyses. Rodingite shows a calc-silicate assemblage with an association of clinopyroxene, xonotlite, chlorite, garnet, vesuvianite, titanite, hornblende and chromite. Chromitite has 60-80% modal chromite, that sporadically shows a slight Fe-chromitization. Silicate assemblage is dominated by serpentine with relics of olivine and, occasionally, diopside, enstatite, hornblende and phlogopite. Later calcite veins crosscut both rodingite and chromitite, extending within serpentinite too. Rodingite shows a widespread range of copper sulfides, the most common ones being chalcocite, followed by native copper, digenite, geerite, and few spotted grains of possible yarrowite and sponkiopite. As secondary Cu oxydes and hydroxydes tenorite and spertiinite were found. In chromitite, close to the upper contact with rodingite, usual secondary sulfides like heazlewoodite and millerite were found together with shandite. Close to the lower rodingite contact, the presence of pyrrhotite, native iron and pentlandite was detected. Very close to the lower contact, again an unusual sulfide assemblage was found, with bornite and galena. Within rodingite clinopyroxenes show both diopside and augite compositions, with XMg ((Mg/(Mg+Fe2+)) of 0.93-0.96 for the former and 0.82-0.86 for the latter. Garnets are grossular and hydrogrossular in the upper rodingite, to which andradite is added in the lower rodingite. Chlorite shows a wide range of compositions with XMg increasing towards the contact with chomitite from 0.47 to 0.60. Very close to the contact XMg of chlorite ranges between 0.67 and 0.94. Chromite accessory grains have XMg ranging between 0.52 and 0.68 and XCr (Cr/(Cr+Al)) ranging between 0.75 and 0.80. Chromite in chromitite has XMg ranging between 0.65 and 0.71 and XCr ranging between 0.68 and 0.71. Olivine is forsteritic with XMg ranging between 0.95 and 0.97 and orthopyroxene is enstatitic with XMg around 0.94-0.95. Chlorite is very rare and has around 3.5 wt% Cr2O3. Rodingite intrusion postdates serpentinization of mantle assemblage and did not affect the chomite+silicate chromitite assemblage. The effect on sulfide variety and distribution was instead remarkable. At least lead and copper were introduced in the contact zone within chromitite to form shandite and bornite. Reducing conditions during rodingite emplacement are witnessed by the abundance of native copper and the presence of native iron. The effect of interaction in rodingite is mainly recorded by the wide range of chlorite compostions that increases its Mg content towards chromitite

    Saharan dust events in the European Alps: role in snowmelt and geochemical characterization

    Get PDF
    The input of mineral dust from arid regions impacts snow optical properties. The induced albedo reduction generally alters the melting dynamics of the snowpack, resulting in earlier snowmelt. In this paper, we evaluate the impact of dust depositions on the melting dynamics of snowpack at a high-elevation site (2160&thinsp;m) in the European Alps (Torgnon, Aosta Valley, Italy) during three hydrological years (2013–2016). These years were characterized by several Saharan dust events that deposited significant amounts of mineral dust in the European Alps. We quantify the shortening of the snow season due to dust deposition by comparing observed snow depths and those simulated with the Crocus model accounting, or not, for the impact of impurities. The model was run and tested using meteorological data from an automated weather station. We propose the use of repeated digital images for tracking dust deposition and resurfacing in the snowpack. The good agreement between model prediction and digital images allowed us to propose the use of an RGB index (i.e. snow darkening index – SDI) for monitoring dust on snow using images from a digital camera. We also present a geochemical characterization of dust reaching the Alpine chain during spring in 2014. Elements found in dust were classified as a function of their origin and compared with Saharan sources. A strong enrichment in Fe was observed in snow containing Saharan dust. In our case study, the comparison between modelling results and observations showed that impurities deposited in snow anticipated the disappearance of snow up to 38&thinsp;d a out of a total 7 months of typical snow duration. This happened for the season 2015–2016 that was characterized by a strong dust deposition event. During the other seasons considered here (2013–2014 and 2014–2015), the snow melt-out date was 18 and 11&thinsp;d earlier, respectively. We conclude that the effect of the Saharan dust is expected to reduce snow cover duration through the snow-albedo feedback. This process is known to have a series of further hydrological and phenological feedback effects that should be characterized in future research.</p

    Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization

    Get PDF
    The high precision measurement of the hyperfine splitting of the muonic-hydrogen atom ground state with pulsed and intense muon beam requires careful technological choices both in the construction of a gas target and of the detectors. In June 2014, the pressurized gas target of the FAMU experiment was exposed to the low energy pulsed muon beam at the RIKEN RAL muon facility. The objectives of the test were the characterization of the target, the hodoscope and the X-ray detectors. The apparatus consisted of a beam hodoscope and X-rays detectors made with high purity Germanium and Lanthanum Bromide crystals. In this paper the experimental setup is described and the results of the detector characterization are presented.Comment: 22 pages, 14 figures, published and open access on JINS

    Particle shape accounts for instrumental discrepancy in ice core dust size distributions

    Get PDF
    The Klotz Abakus laser sensor and the Coulter Counter are both used for measuring the size distribution of insoluble mineral dust particles in ice cores. While the Coulter Counter measures particle volume accurately, the equivalent Abakus instrument measurement deviates substantially from the Coulter Counter depending on the type of sample. We show that the difference between the Abakus and the Coulter Counter measurements is mainly caused by the irregular shape of dust particles in 5 ice core samples. The irregular shape leads means that the calibration routine based on standard spheres must be adjusted. This new calibration routine gives an increased accuracy on Abakus measurements, which may improve future ice core record intercomparisons. We derived an analytical model for extracting the aspect ratio of dust particles from the difference between Abakus and Coulter Counter data. For verification, we measured the aspect ratio of the same samples directly using a Single Particle Extinction and Scattering Instrument. The results demonstrate that the model is accurate enough to discern between 10 samples of aspect ratio 0.3 and 0.4 using only the comparison of Abakus and Coulter Counter data

    Contribution of glaciers to water, energy and food security in mountain regions: current perspectives and future priorities

    Get PDF
    Mountain glaciers are crucial sources of fresh water, contributing directly and indirectly to water, energy and food supplies for hundreds of millions of people. Assessing the impact of diminishing glacial meltwater contributions to the security of this resource is critical as we seek to manage and adapt to changing freshwater dynamics in a warming world. Both water quantity and quality influence water (in)security, so understanding the fluxes of water, sediment and contaminants through glacial and proglacial systems is required for holistic assessment of meltwater contribution to downstream resource security. In this paper we consider the socio-environmental role of and pressures on glacier-fed waters, discuss key research priorities for the assessment of both the quantity and quality of meltwater and reflect on the importance of situating our understanding within a transdisciplinary and inclusive research landscape

    Detection of ice core particles via deep neural networks

    Get PDF
    Insoluble particles in ice cores record signatures of past climate parameters like vegetation, volcanic activity or aridity. Their analytical detection depends on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge and often restrict sampling strategies. To help overcome these limitations, we present a framework based on Flow Imaging Microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify 7 commonly found classes: mineral dust, felsic and basaltic volcanic ash (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber) and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system’s potentials and limitations with respect to the detection of mineral dust, pollen grains and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non destructive, fully reproducible and does not require any sample preparation step. The presented framework can bolster research in the field, by cutting down processing time, supporting human-operated microscopy and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented

    Detection of ice core particles via deep neural networks

    Get PDF
    Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge, and often restrict sampling strategies. To help overcome these limitations, we present a framework based on flow imaging microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify seven commonly found classes, namely mineral dust, felsic and mafic (basaltic) volcanic ash grains (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber), and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system's potential and its limitations with respect to the detection of mineral dust, pollen grains, and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non-destructive, fully reproducible, and does not require any sample preparation procedures. The presented framework can bolster research in the field by cutting down processing time, supporting human-operated microscopy, and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented
    • 

    corecore