5,783 research outputs found

    Many-body quantum dynamics of polarisation squeezing in optical fibre

    Get PDF
    We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fibre, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibres. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.Comment: 4 pages, 4 figure

    Generating Entangled Microwave Radiation Over Two Transmission Lines

    Full text link
    Using a superconducting circuit, the Josephson mixer, we demonstrate the first experimental realization of spatially separated two-mode squeezed states of microwave light. Driven by a pump tone, a first Josephson mixer generates, out of quantum vacuum, a pair of entangled fields at different frequencies on separate transmission lines. A second mixer, driven by a π\pi-phase shifted copy of the first pump tone, recombines and disentangles the two fields. The resulting output noise level is measured to be lower than for vacuum state at the input of the second mixer, an unambiguous proof of entanglement. Moreover, the output noise level provides a direct, quantitative measure of entanglement, leading here to the demonstration of 6 Mebit.s−1^{-1} (Mega entangled bits per second) generated by the first mixer.Comment: 5 pages, 4 figures. Supplementary Information can be found here as an ancillary fil

    Thermodynamics of the \phi^4 theory in tadpole approximation

    Get PDF
    Relying on the Luttinger-Ward theorem we derive a thermodynamically selfconsistent and scale independent approximation of the thermodynamic potential for the scalar Ï•4\phi^4 theory in the tadpole approximation. The resulting thermodynamic potential as a function of the temperature is similar to the one of the recently proposed screened perturbation theory.Comment: 6 pages, including 1 eps figur

    Fingering convection and cloudless models for cool brown dwarf atmospheres

    Get PDF
    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust.Comment: Accepted in ApJ

    From correlation functions to scattering amplitudes

    Get PDF
    We study the correlators of half-BPS protected operators in N=4 super-Yang-Mills theory, in the limit where the positions of the adjacent operators become light-like separated. We compute the loop corrections by means of Lagrangian insertions. The divergences resulting from the light-cone limit are regularized by changing the dimension of the integration measure over the insertion points. Switching from coordinates to dual momenta, we show that the logarithm of the correlator is identical with twice the logarithm of the matching MHV gluon scattering amplitude. We present a number of examples of this new relation, at one and two loops.Comment: typos corrected, references adde

    Effective diffusion constant in a two dimensional medium of charged point scatterers

    Full text link
    We obtain exact results for the effective diffusion constant of a two dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure

    Continuum Derrida Approach to Drift and Diffusivity in Random Media

    Full text link
    By means of rather general arguments, based on an approach due to Derrida that makes use of samples of finite size, we analyse the effective diffusivity and drift tensors in certain types of random medium in which the motion of the particles is controlled by molecular diffusion and a local flow field with known statistical properties. The power of the Derrida method is that it uses the equilibrium probability distribution, that exists for each {\em finite} sample, to compute asymptotic behaviour at large times in the {\em infinite} medium. In certain cases, where this equilibrium situation is associated with a vanishing microcurrent, our results demonstrate the equality of the renormalization processes for the effective drift and diffusivity tensors. This establishes, for those cases, a Ward identity previously verified only to two-loop order in perturbation theory in certain models. The technique can be applied also to media in which the diffusivity exhibits spatial fluctuations. We derive a simple relationship between the effective diffusivity in this case and that for an associated gradient drift problem that provides an interesting constraint on previously conjectured results.Comment: 18 pages, Latex, DAMTP-96-8

    Dualities for Loop Amplitudes of N=6 Chern-Simons Matter Theory

    Get PDF
    In this paper we study the one- and two-loop corrections to the four-point amplitude of N=6 Chern-Simons matter theory. Using generalized unitarity methods we express the one- and two-loop amplitudes in terms of dual-conformal integrals. Explicit integration by using dimensional reduction gives vanishing one-loop result as expected, while the two-loop result is non-vanishing and matches with the Wilson loop computation. Furthermore, the two-loop correction takes the same form as the one-loop correction to the four-point amplitude of N=4 super Yang-Mills. We discuss possible higher loop extensions of this correspondence between the two theories. As a side result, we extend the method of dimensional reduction for three dimensions to five dimensions where dual conformal symmetry is most manifest, demonstrating significant simplification to the computation of integrals.Comment: 32 pages and 6 figures. v2: minus sign corrections, ref updated v3: Published versio

    The Resolved Asteroid Program - Size, shape, and pole of (52) Europa

    Full text link
    With the adaptive optics (AO) system on the 10 m Keck-II telescope, we acquired a high quality set of 84 images at 14 epochs of asteroid (52) Europa on 2005 January 20. The epochs covered its rotation period and, by following its changing shape and orientation on the plane of sky, we obtained its triaxial ellipsoid dimensions and spin pole location. An independent determination from images at three epochs obtained in 2007 is in good agreement with these results. By combining these two data sets, along with a single epoch data set obtained in 2003, we have derived a global fit for (52) Europa of diameters (379x330x249) +/- (16x8x10) km, yielding a volume-equivalent spherical-diameter of 315 +/- 7 km, and a rotational pole within 7 deg of [RA; Dec] = [257,+12] in an Equatorial J2000 reference frame (ECJ2000: 255,+35). Using the average of all mass determinations available forEuropa, we derive a density of 1.5 +/- 0.4, typical of C-type asteroids. Comparing our images with the shape model of Michalowski et al. (A&A 416, 2004), derived from optical lightcurves, illustrates excellent agreement, although several edge features visible in the images are not rendered by the model. We therefore derived a complete 3-D description of Europa's shape using the KOALA algorithm by combining our imaging epochs with 4 stellar occultations and 49 lightcurves. We use this 3-D shape model to assess these departures from ellipsoidal shape. Flat facets (possible giant craters) appear to be less distinct on (52) Europa than on other C-types that have been imaged in detail. We show that fewer giant craters, or smaller craters, is consistent with its expected impact history. Overall, asteroid (52) Europa is still well modeled as a smooth triaxial ellipsoid with dimensions constrained by observations obtained over several apparitions.Comment: Accepted for publication in Icaru

    Quantum many-body simulations using Gaussian phase-space representations

    Get PDF
    Phase-space representations are of increasing importance as a viable and successful means to study exponentially complex quantum many-body systems from first principles. This review traces the background of these methods, starting from the early work of Wigner, Glauber and Sudarshan. We focus on modern phase-space approaches using non-classical phase-space representations. These lead to the Gaussian representation, which unifies bosonic and fermionic phase-space. Examples treated include quantum solitons in optical fibers, colliding Bose-Einstein condensates, and strongly correlated fermions on lattices.Comment: Short Review (10 pages); Corrected typo in eq (14); Added a few more reference
    • …
    corecore