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Abstract  

Relying on the Luttinger-Ward theorem we derive a thermodynamically selfconsistent 

and scale independent approximatioii of the thermodynamic potential for the scalar <154 
theory in the tadpole approximation. The resuIting thermodynamic potential as a hinctioii 

of the temperature is similar to the one of the recently proposed screened perturbation 

theory. 

The usual perturbative evaluation of the QCD thermodynamic potential R(T) up to 

fifth order in the coupling constant g [I] encounters the problem that the contributions 
a g2 to g%lternate in sign and increase in magnitude and do not seem to approach a 

limiting value in the strong coupling regime. Therefore the hope has been formulated that 

a suitably reorgmized perturbation theory can improve the calculation of R. This problem 

has been attaclted in refs. [2, 31. For instance, in ref. [2] a screened loop expansion is 

employed tvhich accounts for the screening in thermal propagators. Such an improvement 

of the convergence properties in analytical calculations of SZ is urgently necessary slnce 

recent lattice QCD calculations [4] have delivered accurate numerical results ~.vhich now 

should be undcrstood on a quantitative Ievel in the physically relevant region, say up to 

temperatures of 5 T„ tvhere significant deviations from the asymptotic limit of SZ cx T%re 

still clearly Seen. Near the confinement teniperature Tc these deviations are, of course, very 

Iarge. One can describe such a behavior on the basis of effective theories with parametess 

adjusted to the lattice results (see [5,6] for recent attempts ancl references puoted tlicrein), 

but most ansagze are hampered by their ad hoc cbaractcr or vague conkact to  QCD as 
tlie fundamental microscopic gauge field tlieoiy. 

Since QCD has a quite cornplicated analyticaf structure, ont: should start So Sevelop a 
systematic approach for simpler model field theories. Here wc coirsider the scdar müh;sless 

4' theory with the Lagmngian L = $(3,$) (dpq5) - For such a model the pertiirljativc 
expansion of C2 is afso perfornied up to fifth order [q, and it  shotws similar bad coxxverBence 

properties ac QCD at not too smali coupling strength g. 'IVe are going to derj!tl.e from the 



Luttinger-Ward theorem an approximation of R(T). The approach of Luttinger and Ward 

is known to be rather general and allows for selfconsistent approximations respecting the 

symrnetries and conservation laws of the underlying full theory. 

She  Luttinger-Ward theorem can be formulated for the scalar theory as 

tvhere A denotes the exact propagator and IT the exact selfenergy; IIsn) stands for the 

contribution of the skeleton diagrams of nth order to the selfenergy (these are two-particle 

irreducible diagrams); V is tlie volume of the system, and is explained below. R has 

the property of stationarity [SI, i.e., 

whieh ensures the selfconsistent relation between R, A and II. Originally the relations (1, 

2) have been derived for Fermi systems [9], later it has been extended to Bose systems 

[10]. For details of the derivatioii of the formulation (1, 2) we refer the interested reader 

to [ll, 121. 
Here we use eqs. (1, 2) to derive a consistent approximation of R. Our starting point 

is the restriction to  the tadpole contribution to the selfenergy. This implies that we take 

into account only the first term in the functional R', i.e., 

(AQl and double lines in the diagrammatic representation deriote the full propagator in 

the considered approximation). The corresponding selfenergy is due to eq. (3) 

In tlie tadpole approximation the selfenergy is momentum independent and real. There- 

fore, in this approxinration the corresponding resummed propagator looks Iike the free 

propagator modified by a term which resembles a mass term, i.e„ A-l -+ A-' - A-l - 
(1) - (0 )  

and is espiivalent to the 1-loop selfenergy. 

Since after performirig the Matsubara sum the integrals over loop momenta are ultra- 

violet divergent one has to  regularize. IVe employ the scheme in 4 - 26 dimensions, 

where 



p is the renormalization scde, and y N 0.577 is Euler's number. An explicit calculation 

of eq. (5) yields 

which is an implicit equation for IIb). Tlie first term cc corresponds to tlie divergent 

vacuum part in the usual vacuum selfenergy of the massive scalar theory. Since now II?,) 
is temperature dependent, also this term is temperature dependent. Tlierefore, it cannot 

be cancelled by vacuum counter terms. It  can be shown, however, that this term as well as 

the scale dependent term oc In(p2/T2) are cancelled by higher loop contributions. This can 

be Seen explicitly when considering all contribut.ions cx g4T2(f + ln !$) to the exact self- 

energy. In our case the relevant contributions corne frorn the above tadpole, 12 0 -t 
IIS 2 2 

12 (- G) & (j +In g), thc rising sun diagram, 06 -+ -96 (-,J wni (z+ ln  T" 1 G), 
and tlie vertex correction in the tadpole, 12 T21 I + -12 ( -G)  &z5(;+ln $$), whicl~ 

indeed cancel since in leading orcler II?,) -+ .q2T'/ii!. The regularized part of eq. (7) thus 

allows the identification TI?,) -> m2 and reads a t  E -+ 0 like a gap equation 

which determines m(T). Therefore, in our approadl the gap equation is inherent, whik 
in ref. [2] i t  is talren as an external information. With the definition AG: = Ar1 - m2 our 
approximation of the therniodynamic potential is determined by 

where we iised d,z l n ( -A~; )  = -A,s for caiciilatiug 

I t  is remarkable that  in the espression (9) the divergencim and scafe depcndent terrns 
exactly cancel and, in ctrntrast to eq, (Y), no ssumptions on cancelfhg higher-oder 



contributions or so arc needed. In this sense, is to be considered as a consistent 

approximation. 

It  should be noted that the thermodynamic potential eq. (10) loolts like the one for 

an ideal gas with temperature dependent thermal mass of the particles (first term) plus 

two correction terms (second line). In fig. 1 we show the numerical results of the solution 

of eqs. (8, 10) for the pressure p = -S2(1)/V as a function of the coupling strength. 

Interestingly, our pressure is very similar to the one derived in the screened loop expansion 

[2] up to g = 4; at larger values of g our pressurc is somewhat larger. The massive ideal 

gas term alone turns out as a quite acceptable approximation of the full expression eq, (10) 

on the 10% level. The entropy density s = dp/aT is exactly given by tbe formula for the 

ideal gas of particles with mass m(T), while the energy density e = s T  - p consists of the 

massive ideal gas contribution plus two correction terms (second line in eq. (10) but with 

opposite signs). The form of the thermodynamical quantities is intimately related to the 

fact that the excitations with mass m(T) represent stable quasiparticles. 

Going beyond the tadpole approximation means inclusion of the rising sun diagram 

in the selfenergy or fixing the functional R1 by Riz) = R;„ - 12 . Here one 

gets a momentum dependent selfenergy which also possesses an imaginary part. Then the 

sum integrals are not longer analytically calculable as before and deserve new techniques. 

In QCD even more involved structures appear since already at tlie l-loop level the 

selfenergies become momentum dependent and contain imaginary parts; different mass 

scales also appear. Therefore, a direct applicatioin of our scheme to QCD needs a more 

sophisticated approach. However, when neglecting the quasiparticle damping and the 

momentum dependence of the selfenergy then the entropy density is given again by the 

massive ideal gas expression. From this one can conclude that the phenomenological ap- 

proaches, which use ideal gas approximations with thermal masses [5, 6, 131 for describing 

QCD lattice data, get some support. 
In Summary, basing on the Luttinger-Ward theorem for a selfconsistent relation be- 

tween thermodynamic potential, propagator, and selfenergy we derive an expression for 

the thermodynamic potential in the tadpole approximation for the q5"heory which turns 

out to be numerically similar to the one in the screened loop expansion. The previous 

trails to approximate the thermal field theory in the strong coupling regime by an effec- 

tive ideal gas expression for the entropy density of particles with finite thermal masses 

are supported. 
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Figure 1: The. pressure (scalecl by the Stefaii-Boltzrnann pressiire of an massless ideal gxs) 

in sur approac11 eq. (10) f f~d l  line) as a fnnctioil ctf thc coupling stserigth. The dotted line 

is the ideal massive gas cantribution (Frrst term in eq. (10)), while the dashed line depicts 

the resutIt of the screeritrcl loop exyansion [2f. 
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