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1 Introduction

One of the most remarkable manifestations of the AdS/CFT correspondence [1–3] in recent

years was the duality between planar gluon scattering amplitudes and light-like polygonal

Wilson loops. It was first proposed at strong coupling [4, 5] and soon afterwards also ob-

served at weak coupling, first at one loop [6, 7], followed by extensive two-loop tests [8–11].

This duality can be formulated as follows:

ln
(
An/A

(0)
n

)
= ln (W [Cn]) +O(1/Nc) +O(ǫ) . (1.1)

Here An is the all-order n−gluon (color-ordered) MHV scattering amplitude depending on

the particle light-like four-momenta pi (with p2i = 0 and
∑n

i=1 pi = 0), and A
(0)
n is the

tree-level amplitude. An essential step in establishing the relation (1.1) is the so-called

T-duality transformation from momenta to dual coordinates:

pi = xi − xi+1 ≡ xi,i+1 , x2i,i+1 = 0 , xi+n ≡ xi . (1.2)

The Wilson loop W [Cn] is defined on a closed polygonal contour Cn in the dual space,

with cusps at points xi and with light-like edges [xi, xi+1]. The duality (1.1) holds in pla-

nar N = 4 super-Yang-Mills theory (SYM) and up to terms vanishing when the suitably

identified infrared (for amplitudes) and ultraviolet (for Wilson loops) regulators ǫ→ 0.1

An important ingredient in this duality is the notion of dual conformal symmetry. This

is the natural symmetry of the light-like Wilson loop, becoming anomalous due to the cusp

singularities [13–16]. By virtue of the duality (1.1) it is extended to a symmetry of the

planar scattering amplitudes of dynamical origin. The first evidence for this new symmetry

came from the study [17, 18] of the loop momentum integrals appearing in the four-gluon

amplitudes up to four (or even five) loops [19–22]. Once rewritten in dual space accord-

ing to (1.2), they become pseudo-conformal (the infrared regulator breaks the symmetry).

This dual conformal symmetry, or rather its anomalous version [9, 23], was instrumental

in explaining the so-called BDS ansatz for MHV amplitudes [20].

In the present paper we provide evidence for another duality relation in the planar

N = 4 SYM theory, this time between MHV gluon amplitudes and correlation functions of

gauge invariant composite operators on the light cone. The operators we consider belong

to the class of half-BPS (or “short”) scalar operators. They are of the type O(k) = Tr(φk),

made of the six real scalars φ of the N = 4 SYM theory. They carry R-symmetry SU(4)

Dynkin labels [0, k, 0] and transform as chiral primaries under the superconformal symme-

try PSU(2, 2|4) of the N = 4 theory, with fixed conformal dimension d = k. In perturbation

theory, such operators do not undergo renormalization and are thus protected to all or-

ders. The best known example is the simplest, bilinear (k = 2) operator, belonging to the

so-called stress-tensor superconformal multiplet. In the context of the AdS/CFT correspon-

dence, these operators are dual to massive Kaluza-Klein modes in the compactification of

type IIB supergravity on an AdS5 × S5 background.

1Quite remarkably, the duality between planar amplitudes and light-like Wilson loops also holds in gauge

theories with less or no supersymmetry, including QCD. However, in distinction with N = 4 SYM, there

the relation (1.1) is satisfied in the high-energy (Regge) limit only [6, 12].
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Correlation functions of half-BPS operators have been the subject of numerous stud-

ies. Not only the conformal dimension of the operators, but also their two- and three-point

correlation functions are protected [24–28]. The first non-trivial quantum corrections ap-

pear in the four-point correlation functions of protected bilinear operators, which have

been computed up to two loops in [29–34]. The knowledge of these quantum corrections

allowed one to extract the spectrum of anomalous dimensions of the Konishi operator [35],

and later on of all twist-two operators up to two loops by means of a conformal operator

product expansion (OPE) [36, 37].

Here we propose to look at such correlation functions from a novel point of view.

Consider the correlation function of n protected operators

Gn = 〈O(x1)O(x2) . . .O(xn)〉 . (1.3)

As long as we maintain the points xi (with i = 1, . . . , n) in generic positions, this function

is well defined and has conformal symmetry. As a consequence, it is given by a product of

free scalar propagators times some (coupling dependent) function of conformal cross-ratios

x2ijx
2
kl/(x

2
ikx

2
jl). In perturbation theory this function is expressed in terms of conformally

invariant space-time loop integrals. Now, imagine that we wish to take the limit in which

neighboring points become light-like separated,2

x2i,i+1 → 0 , xi+n ≡ xi . (1.4)

The correlation function Gn becomes singular in this limit. The first problem we have

to face are the pole singularities in G
(0)
n , due to the propagators 1/x2i,i+1 connecting two

neighboring scalars. Secondly, the loop integrals develop logarithmic light-cone divergences

∼ lnx2i,i+1 when the integration points approach one of the light-like segments [xi, xi+1].

To deal with the first problem, it is sufficient to consider the ratio Gn/G
(0)
n , in which the

pole singularities are removed. The second problem is more serious, it requires introducing

an appropriate regularization.

Two possible choices of a regularization procedure are: (i) use the small distances x2i,i+1

as a cutoff; (ii) employ standard dimensional regularization and set x2i,i+1 = 0 from the

very beginning. These two regularizations are considered in the parallel publication [39],

where it is shown that in both cases the ratio of the correlation function and its tree-level

expression reduces to the square of a Wilson loop,

lim
x2
i,i+1→0

Gn/G
(0)
n ∝ (W [Cn])

2 . (1.5)

The exact form of the proportionality factor in the right-hand side of this relation depends

on the regularization; for case (ii) it is just 1. HereW [Cn] is the light-like polygonal Wilson

loop in the fundamental representation of the gauge group described earlier. Since W [Cn]

is dual to the MHV gluon amplitude, eq. (1.1), we expect that the ratio of the correlation

functions in the left-hand side of (1.5) is also related to the ratio of amplitudes, An/A
(0)
n .

2A similar light-cone limit has extensively been studied in QCD, see, e.g., the review [38].
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The question arises if we could find another, more direct way of establishing the relation

between correlation functions and amplitudes without invoking Wilson loops.

In the present paper we propose a scenario which realizes this direct link. It employs

an unusual, dual infrared dimensional regularization procedure. This may seem surprising,

as we have just argued that the singularities of the correlation function occur at short

distances. Nevertheless, we can consider the following alternative. We start by computing

the loop corrections to the correlation function by means of Lagrangian insertions. This

method is well known in field theory and has been further developed in [32, 33, 40] for the

two-loop computations of four-point correlation functions, but it has universal applicability.

The idea is to interpret the loop corrections to the correlation function as derivatives with

respect to the coupling g. For instance, the one-loop correction

g2
∂

∂g2
Gn = −i

∫
dDx0 G(0)

n+1(x0;x1, . . . , xn) (1.6)

is calculated from the Born-level (n+ 1)-point correlation function

G(0)
n+1(x0;x1, . . . , xn) = 〈L(x0)O(x1) . . .O(xn)〉 (1.7)

obtained by inserting the Lagrangian at the extra point x0. The crucial point here is that

the correlation function (1.7) stays well defined (after dividing it by the tree approximation

G
(0)
n ) in D = 4 dimensions, even if we put the outer points xi (with i = 1, . . . , n) on the

light cone, but keeping the insertion point x0 in a generic position. The logarithmic singu-

larities originate from the integration over the insertion point in (1.6). Then we propose to

regularize this integral by choosing a measure in D = 4− 2ǫ dimensions, with ǫ < 0. This

unusual regularization is motivated by the analogy between the space-time loop integrals

appearing in (1.6), and the momentum loop integrals in the gluon MHV scattering ampli-

tude An discussed earlier. The analogy becomes possible after the T-duality transformation

(or change of variables in the integrals) (1.2), provided we use the infrared-like regulator

above. Still, nothing guarantees at this stage that we will find a result, not only similar,

but identical with a scattering amplitude. Yet, rather surprisingly, this is what happens.

We can rephrase the proposed dual infrared regularization in the following way. The

Born-level (n + 1)−point correlation function (1.7) defines the integrand of the one-loop

correction to the n−point correlation function in (1.6). So, the proposal is to compare this

integrand to that of the matching amplitude, re-expressed in terms of dual coordinates.

Both objects are rational functions of the coordinates (for the correlator) or of the dual

momenta (for the amplitude), well defined in D = 4 dimensions. The need to introduce

infrared dimensional regularization for the amplitude occurs when we start integrating over

the loop momenta (the analogs of the integration point x0 in (1.6)). So, our proposal is to

compare the finite integrands of the correlator in the light-cone limit and of the amplitude,

and not the corresponding divergent integrals.

In the present paper we show a number of examples of this new phenomenon. These

include all the n−point correlation functions (1.3) at one loop, and the four- and five-

point correlation function up to two loops. At present we have no explanation why this is

so, but if this new duality correlators/amplitudes is confirmed, it will provide the natural
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explanation of the mysterious dual conformal symmetry [17, 18] of the loop momentum

integrals in all available gluon amplitude calculations (n gluons at one loop [41], four gluons

up to five loops [19–22], five [42] and six [11] gluons up to two loops).

The paper is organized as follows. In section 2 we show a simple example of a corre-

lation function becoming an amplitude in the light-cone limit and we formulate the main

idea of the correlators/amplitudes relation. In section 3 we give a more detailed description

of the correlation functions of protected half-BPS operators in superspace. We explain how

their loop corrections can be obtained by Lagrangian insertions. We then outline the pro-

cedure of establishing the duality with amplitudes, in particular the introduction of dual

infrared regularization. In section 4 we show in detail how the duality works for n−point

correlation functions of bilinear half-BPS operators at one loop. In section 5 this is extended

to four-point correlation functions up to two loops, and in section 6 to five-point correla-

tion functions up to two loops. Appendix A summarizes some key points of the harmonic

superspace formalism which we employ for loop calculations. In appendix B we generalize

our findings to four-point correlation functions of half-BPS operators of arbitrary weight.

2 A simple example of the duality correlators/amplitudes

In this section we discuss some general properties of the protected operators in N = 4 SYM

and of their correlation functions. To illustrate our main idea, we show how the four-point

one-loop correlation function is transformed into the four-gluon one-loop amplitude in the

light-cone limit.

The gauge invariant composite operators in N = 4 SYM can be classified as represen-

tations of the superconformal group PSU(2, 2|4) (see, e.g., [43–45] and references therein).

There are two basic types of such operators, usually referred to as protected (or “short”)

and unprotected (or “long”). The former satisfy conditions of BPS shortening, i.e. they are

annihilated by a fraction of the supercharges. This, together with the conditions that they

are superconformal primaries, implies that they have quantized, or protected conformal

dimension equal to their canonical dimension. The long operators correspond to generic

superconformal representations, they receive quantum corrections and acquire anomalous

dimensions.

In this paper we will consider only operators of the half-BPS type. Their lowest

components (or superconformal primaries) are made of the six real scalars in the N = 4

vector multiplet, φAB = −φBA = 1
2ǫABCDφ̄

CD, where A,B = 1, . . . , 4 are indices of the

fundamental irrep of the R symmetry group SU(4). Generically, they are of the type

O(k) = Tr(φk), carry SU(4) Dynkin labels [0, k, 0] and have fixed conformal dimension

d = k. The best known example is the simplest, bilinear (k = 2) operator, belonging to

the so-called stress-tensor superconformal multiplet. The top spin state in this multiplet

is the stress tensor, while the state of highest dimension is the Lagrangian of the N = 4

SYM theory. The lowest dimension state of the multiplet is the bilinear scalar operator

OABCD = Tr(φABφCD)−
1

12
ǫABCDTr(φ̄

EFφEF ) (2.1)
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belonging to the irrep 20′ = [020] of SU(4). Here φAB = φaABt
a, where ta are the generators

of the fundamental representation of the gauge group SU(Nc), normalized as tr(tatb) =
1
2δ

ab. In what follows we always assume the planar limit,

a =
g2Nc

8π2
, Nc → ∞ . (2.2)

Let us consider certain projections of (2.1), namely

O = Tr(φ12φ12) , Õ = Tr(φ̄12φ̄12) , Ô = 2Tr(φ̄12φ12)−
1

6
Tr(φ̄EFφEF ) , (2.3)

where O is the (complex) highest-weight state, Õ is the conjugate lowest-weight state and

Ô is a real projection. We want to evaluate the correlation function of n such operators. For

n = 2m we can take, e.g., m operators O and m conjugates Õ and consider the correlation

function

Gn = 〈O(x1)Õ(x2) . . .O(xn−1)Õ(xn)〉 . (2.4)

For n = 2m+ 1 we can add one operator Ô, replacing (2.4) by

Gn = 〈O(x1)Õ(x2) . . .O(xn−2)Õ(xn−1)Ô(xn)〉 . (2.5)

Such correlation functions are finite (the operators (2.3) are not renormalized) and

conformally covariant, as long as the points xi are kept apart, xi 6= xj . If we let two

points get close to each other, xi → xj , we are dealing with the well-known short distance

expansion of the product of operators O(xi)O(xj) mentioned above. Here we plan to do

something else. We wish to take the limit where the neighboring points become light-like

separated, without coinciding with each other3

x2i,i+1 → 0 , xi 6= xi+1 , (i = 1, . . . , n) , (2.6)

(with the cyclic condition xn+1 ≡ x1). This limit is singular for two reasons. Firstly, the

correlation function develops pole singularities, as can be seen already from the (connected,

planar) tree-level approximation

G(0)
n =

(2π)−2nN2
c

x212x
2
23 . . . x

2
n1

+ subleading terms . (2.7)

By “subleading” we mean terms corresponding to different Wick contractions of the scalar

fields φ which are less singular in the limit (2.6) (see an illustration in figure 1). This can

be remedied by considering the ratio

lim
x2
i,i+1→0

Gn/G
(0)
n . (2.8)

Notice that the limit (2.6) breaks the symmetry of Gn under the exchange of identical

operators (e.g., exchanging all points with odd or with even numbers in (2.4)). Instead, it

has a cyclic symmetry, xi → xi+1, and a flip symmetry, xi → xn−i+1.

3The standard OPE is done in the Euclidean regime, where x2
i,i+1 = 0 implies xi = xi+1. The Minkowski

regime allows us to consider the new possibility (2.6).

– 6 –
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. . .

. . .

x1 x1

x2 x2

x3 x3x4 x4

xn−1 xn−1

xn xn

(a) (b)

Figure 1. Feynman diagrams of different types contributing to the correlation function (2.4) at

tree level. Arrowed lines denote free scalar propagators 〈φ̄12(xi)φ12(xj)〉. In the light-cone limit

x2i,i+1 → 0 the leading contribution comes from diagram (a), while that of diagram (b) is suppressed

by the factor x234x
2
1n/(x

2
3nx

2
14).

Secondly, the loop integrals develop additional light-cone singularities in the limit (2.6).

To illustrate this, let us take a simple example — the four-point correlation function (2.4)

at one loop. It has been computed in [29–31] and the result for the ratio G4/G
(0)
4 is given by

G4/G
(0)
4 = 1 + 2a x213x

2
24g(xi) +O(a2) . (2.9)

Here the one-loop integral g(xi) is defined by

g(xi) =
i

2π2

∫
d4x0

x210x
2
20x

2
30x

2
40

. (2.10)

As long as the outer points are kept in generic positions, x2i,i+1 6= 0, this integral is finite

and conformally covariant in four dimensions. This allows us to write it down as a function

of two conformal cross-ratios

g(xi) =
1

x213x
2
24

Φ(1)(u, v) , u =
x214x

2
23

x213x
2
24

, v =
x212x

2
34

x213x
2
24

, (2.11)

where the two-variable function Φ(1) can be found in [46, 47]. The cross-ratios vanish in

the limit (2.6) and this function develops a logarithmic singularity, Φ(1)(u, v) ∼ ln v lnu as

u, v → 0. It originates from the integration in (2.10), when x0 approaches one of the four

light-cone segments [xi, xi+1].

Therefore, to define the integral (2.10) in the limit (2.6) we have to introduce a reg-

ularization. The standard approach is to use dimensional regularization from the very

beginning, that is, to repeat the whole calculation that leads to (2.9), but in D = 4 − 2ǫ

dimensions (with ǫ > 0). This approach was adopted in [39], where it was shown that the

limit (2.8) turns the correlation function into a light-like Wilson loop.

Alternatively, we might use the four-dimensional result (2.9) and declare that we simply

regularize the integral (2.10) by choosing a measure in D = 4−2ǫ dimensions (with ǫ < 0).

Notice the change of sign of the regulator — now it looks more like an infrared, rather than

– 7 –
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the natural ultraviolet regulator needed for such short-distance singularities. This unusual

choice is motivated by the observation that the one-loop space-time integral (2.10) is the

dual space version [17, 18] of the one-loop scalar box momentum integral appearing in the

four-gluon MHV amplitude. The latter is given by [20]

A4/A
(0)
4 = 1 + a stI

(1)
4 (pi) +O(a2) , (2.12)

where A
(0)
4 is the tree-level amplitude, s = (p1 + p2)

2, t = (p3 + p4)
2 are the Mandelstam

variables and

I
(1)
4 (pi) =

2i

(2π)2−2ǫ

∫
dDk

k2(k − p1)2(k − p1 − p2)2(k + p4)2
(2.13)

is the one-loop scalar box integral. Switching from momenta to dual coordinates, k =

x1 − x0 and pi = xi − xi+1 (with x5 ≡ x1) , we identify the two integrals:

I
(1)
4 (pi) = gǫ(xi) , (2.14)

where the subscript in gǫ indicates that we have changed the measure in (2.10) toD = 4−2ǫ

dimensions (with ǫ < 0). Notice that the light-cone limit (2.8) for the correlation function

implies that the momenta pi = xi,i+1 are light-like, p2i = 0, as required for the amplitude.

Further, comparing (2.9) and (2.12), we observe a surprisingly simple relation between

correlation function and amplitude:

lim
x2
i,i+1→0

G4/G
(0)
4 =

(
A4/A

(0)
4

)2
+O(a2) . (2.15)

This one-loop exercise suggests the following general recipe for obtaining MHV gluon

amplitudes from correlation functions of protected operators:

1. Compute the n−point correlation function of protected operators in four dimensions.

2. Change theD = 4 integration measure in the loop integrals toD = 4−2ǫ (with ǫ < 0).

3. Divide the correlation function by its tree-level value and take the light-cone limit

x2i,i+1 → 0.

4. Switch from coordinates to dual momenta. The result should be the square of the

n−gluon MHV amplitude divided by its tree-level expression.

Of course, the four-points/gluons case at one loop is probably too simple to allow us to

jump to the conclusion that such a duality correlator/amplitude is a general phenomenon.

It is the purpose of this paper to provide a lot of evidence in favor of this conjecture.

3 Correlation functions of protected operators in superspace and their

loop corrections

In this section we explain the role of the Lagrangian insertion procedure in the calculation

of loop corrections to correlation functions. Then we formulate the rules of dual infrared

dimensional regularization and state the main result of the paper.
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3.1 Correlation functions of protected operators in N = 2 harmonic super-

space

The one-loop, and even more so the two-loop calculation of the correlation functions are

much easier to do in terms of superspace Feynman graphs. Since there exists no off-shell for-

mulation of the N = 4 SYM theory suitable for application to perturbation theory, the best

compromise is to use the formulation in terms ofN = 2 superfields in the so-called harmonic

superspace [48, 49]. We give a brief summary of this formalism in appendix A. Here we

just mention the types of N = 2 supermultiplets and superfields that we are dealing with.

The N = 4 vector multiplet is decomposed into an N = 2 matter multiplet (hy-

permultiplet) and an N = 2 vector (gauge) multiplet. Upon reducing the R symmetry,

SU(4) → SU(2)× U(1), the six real scalars φAB split into an isodoublet φi (with i = 1, 2)

and a complex singlet ϕ; the four (chiral) gluinos λAα split into a doublet λiα and two

singlets ψα, κα (and their antichiral conjugates). These fields can be combined to form

N = 2 superfields. One of them describes the hypermultiplet:

q+(x, θ+, θ̄+, u) = φi(x)u+i + θ+αψα(x) + θ̄+α̇ κ̄
α̇(x) + . . . (3.1)

(the dots denote auxiliary and derivative terms). It is a Grassmann analytic (or G-analytic,

or half-BPS) superfield in the sense that it depends on half of the Grassmann variables,

θ+α = θiαu+i and θ̄+α̇ = θ̄iα̇u+i , obtained by projecting the SU(2) doublets θiα and θ̄iα̇

with an SU(2) harmonic variable u+i . The latter, together with its conjugate u−i = (u+i)∗

forms an SU(2) matrix. Notice the presence of both chiral and antichiral odd variables

in the hypermultiplet superfield (3.1). In harmonic superspace one can define a special

conjugation (denoted by tilde ˜), which takes (3.1) to another G-analytic superfield,

q̃+(x, θ+, θ̄+, u) = φ̄i(x)u+i + θ+ακα(x) + θ̄+α̇ ψ̄
α̇(x) + . . . . (3.2)

In contrast with the hypermultiplet, the N = 2 vector multiplet is described by the chiral

field strength (and its antichiral conjugate)

W (x, θ) = ϕ(x) + θiαλiα(x) + θiαθβi Fαβ(x) + . . . (3.3)

containing, in particular, the self-dual part of the gluon field strength Fαβ = (σµν)αβFµν .

The protected half-BPS bilinear operators (2.1) in the SU(4) irrep 20′ split into a

number of irreps of SU(2)×U(1). They can be descried as the lowest (θ = 0) components

of bilinears made of the above superfields. Three such bilinears are G-analytic superfields:

O = Tr(q+q+) , Õ = Tr(q̃+q̃+) , Ô =
˜̂
O = 2Tr(q̃+q+) , (3.4)

where all operators are functions of x, θ+, θ̄+, u. For example, the operator O(x, θ+, θ̄+, u)

has the bottom component O(x, u) = O|θ+=θ̄+=0 = Tr(φi(x)φj(x))u+i u
+
j containing the

complex SU(2) triplet Tr(φiφj). Another, real triplet is the bottom component of the real

operator Ô =
˜̂
O, Ô(x, u) = Ô|θ+=θ̄+=0 = 2Tr(φ̄i(x)φj(x))u+i u

+
j . We may say that the

harmonic variables serve as a “bookkeeping device” for organizing the fields into SU(2)

representations.
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The remaining SU(2) × U(1) projections of the 20′ are described by different types

of superfields. Among them, the chiral operator Tr(WW ) plays the prominent role of the

N = 2 SYM Lagrangian. In this paper we do not consider the rest of the N = 2 projections

of the 20′: Tr(WW̄ ), Tr(Wq+), Tr(Wq̃+) and conjugates.

The correlation functions of the three G-analytic operators (3.4) will be the main sub-

ject of this and the following sections. We are considering n-point correlation functions of

the type, e.g.,

Gn = 〈O(x1, u1)Õ(x2, u2) · · · O(xn−1, un−1)Õ(xn, un)〉 (3.5)

for n even, or

Gn = 〈O(x1, u1)Õ(x2, u2) · · · O(xn−2, un−2)Õ(xn−1, un−1)Ô(xn, un)〉 (3.6)

for n odd. At tree level the connected contribution to the correlation function has the form4

G(0)
n =

N2
c

(2π)2n
(12)(23) · · · (n1)
x212x

2
23 · · ·x2n1

+ subleading terms , (3.7)

where (r, r + 1) is a shorthand for the SU(2) invariant but U(1) covariant contraction of

the two harmonics with labels r and r + 1,

(r, r + 1) = −(r + 1, r) = u+i
r ǫiju

+j
r+1 . (3.8)

In (3.7), as in the expression (2.7) for the tree amplitude for the highest-weight and lowest-

weight state projections of the 20′, we only show the leading singular term in the light-cone

limit (2.6). Compared to (2.7), the tree-level expression (3.7) contains additional informa-

tion about the isotopic SU(2) structure of the correlation function. It is carried by the

harmonic variables u+ i
r (with i = 1, 2 and r = 1, . . . , n) at each point.

3.2 Lagrangian insertions

The correlation functions (3.5) and (3.6) are defined by the path integral

Gn =

∫
DΦ eiSN=4 SYM O(x1, u1) . . .O(xn, un)

= G(0)
n + g2G(1)

n + g4G(2)
n + . . . . (3.9)

Here the N = 4 SYM action consists of two parts, the N = 2 SYM action and the action

of the N = 2 hypermultiplet matter coupled to the gauge sector:

SN=4 SYM = SN=2 SYM + SN=2 matter . (3.10)

4More precisely, a n-point correlation function may involve m complex operators O and also m conjugate

operators Õ, the remaining n − 2m operators being of the real type Ô. At tree level, such a correlation

function equals cnm G
(0)
n , where cn0 = 1 + (−1)n and cnm = (−1)n+m : m > 0. In this paper we are

interested in the ratio of loop corrections over the corresponding tree, which is universal. The coefficients

cnm can thus safely be omitted.
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Instead of computing the loop corrections to Gn directly, we prefer to evaluate the

derivative with respect to the coupling. As we show below, it is given by the insertions of

the N = 2 SYM action

SN=2 SYM =

∫
dDxd4θ LN=2 SYM(x, θ) =

∫
dDxd4θ̄ L̄N=2 SYM(x, θ̄) , (3.11)

where, after the appropriate rescaling of all the fields of the N = 2 vector multiplet,

LN=2 SYM =
1

2g2
Tr(W 2) (3.12)

=
1

2g2
{Tr(ϕ2)+. . .−(θ)4Tr[FαβF

αβ+4φi�φ̄i+4iλi∂̂λ̄i+interaction terms]}

is the N = 2 SYM chiral Lagrangian. The effect of the rescaling is that the coupling

g disappears inside the Lagrangian LN=2 SYM, it is only present in front of it, as indi-

cated in (3.12). The coupling also drops out from the interaction of the vector and matter

multiplets (see appendix A.3).

Notice that the action in (3.11) has two forms, one chiral, the other antichiral. They

are equivalent due to a Bianchi identity stating that the difference between Tr(W 2) and

Tr(W̄ 2) is a total (super)space derivative. At the component level, this is clearly seen

from (3.12), where, for instance, the complex combination FαβF
αβ = F 2 + iF F̃ contains

the Yang-Mills Lagrangian F 2 and the topological term iF F̃ . We will come back to this

important point later on.

Now, we want to differentiate the correlation function with respect to the coupling,

which is present only in SN=2 SYM as an overall factor, see (3.12). Thus, the one-loop

(order g2) correction to the correlation function,

g2
∂

∂g2
Gn = −i

∫
dDx0 G(0)

n+1(x0;x1, u1; . . . ;xn, un) +O(g4) (3.13)

is calculated from the Born-level (n+ 1)-point correlation function

G(0)
n+1(x0;x1, u1; . . . ;xn, un) =

∫
d4θ0〈LN=2 SYM(x0, θ0)O(x1, u1) . . .O(xn, un)〉+O(g4) ,

(3.14)

obtained by integrating the Lagrangian insertion over the Grassmann variables at the inser-

tion point, but not over the space-time point x0. Note that the tree-level correlation func-

tion G(0)
n+1 is of order O(g2), because it involves interaction vertices (see section 4 for details).

A very important property of the correlation function G(0)
n+1 is its superconformal sym-

metry. Indeed, it involves the protected operators O and LN=2 SYM (the latter belongs to

the N = 4 stress-tensor multiplet), with fixed conformal dimensions 2 and 4, respectively.

Such operators are not renormalized and have well-defined conformal properties. This

symmetry greatly facilitates the perturbative calculation, as explained in appendix A.

The same procedure can be applied to the higher-order perturbative corrections. Thus,

to obtain the correlation function at two loops (order g4), we compute the derivative

1

2
g4
(

∂

∂g2

)2

Gn = −1

2

∫
dDx0d

Dx0′ G(0)
n+2(x0, x0′ ;x1, u1; . . . ;xn, un) +O(g6) (3.15)
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in terms of the Born-level (n+2)-point correlation function with two Lagrangian insertions

(see appendix A.3)

G(0)
n+2 =

∫
d4θ0d

4θ0′〈L(x0, θ0)L(x0′ , θ0′)O(x1, u1) . . .O(xn, un)〉+O(g6) . (3.16)

In conclusion, the Lagrangian insertion procedure reduces the calculation of loop cor-

rections to the correlation function Gn to a tree-level calculation of the correlation function

G(0)
n+2 with two insertions of the Lagrangian. The main point of our conjecture is that this

tree-level correlation function tells us what the integrand of the dual MHV amplitude

should look like. The precise matching of the two objects is obtain by introducing a dual

infrared regulator.

3.3 Outline of the dual infrared regularization procedure and of the duality

correlator/amplitude

Our strategy for establishing the relationship between correlation functions and amplitudes

is as follows.

We start with the tree-level correlation functions G(0)
n+1 and G(0)

n+2, defined in eqs. (3.14)

and (3.16), respectively. They are computed in D = 4 and need no regularization. Then,

we put G(0)
n+1 and G(0)

n+2 on the light cone by setting the adjacent external points at light-like

distances, x2i,i+1 → 0 (with i = 1, . . . , n). In order to remove the pole singularities, we

divide the correlation function with Lagrangian insertions by the tree-level correlation

function without insertions (3.7), thus obtaining U(1) chargeless ratios, G(0)
n+1/G

(0)
n and

G(0)
n+2/G

(0)
n . After that it becomes safe to set the external points on the light cone, while

keeping the insertion points x0 and x0′ in arbitrary positions. We remark that at this stage

we still need no regularization.

Next, we perform the integration over the insertion points, thus passing from the tree-

level correlation functions with insertions G(0)
n+1 and G(0)

n+2 to the loop corrections of the

correlation function without insertions Gn. Here we are facing logarithmic singularities

due to the divergent integrals over x0 and x0′ . Divergences arise when the integration

points approach a light-like segment [xi, xi+1]. We regularize the integrals by modifying

the dimension of the integration measure, D = 4− 2ǫ, with ǫ < 0. We emphasize that this

is not standard dimensional regularization, for two reasons: (i) the tree-level correlation

function with extra points from the Lagrangian insertions has been computed in D = 4

and then put on the light cone, without regularization; (ii) the sign of the regulator ǫ is

chosen to match the infrared divergences of the dual amplitude, so this is not the usual

ultraviolet regulator. We call this “dual infrared regularization”.

In order to make contact between the n-point correlation function and the n-gluon

amplitude, we identify the momenta with the dual coordinates

pi = xi,i+1 , xn+1 ≡ x1 , (3.17)

so that
∑n

1 pi = 0 and p2i = 0. The Mandelstam variables are identified with the non-

vanishing distances in dual space,

sij = (pi + pi+1 + . . .+ pj)
2 = x2i,j+1 . (3.18)
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Figure 2. The n-point correlation function with one insertion. The solid and wavy lines are

hypermultiplet and gauge propagators, respectively. The double dot denotes the insertion of the

N = 2 SYM Lagrangian Tr(W 2).

The main result of the next three sections is that the above procedure leads to the

following duality relation between correlation functions restricted to the light cone and

MHV n-gluon scattering amplitudes in planar N = 4 SYM:

lim
x2
i,i+1→0

ln
(
Gn/G

(0)
n

)
= ln

(
An/A

(0)
n

)2
+O(ǫ) , (3.19)

where A
(0)
n is the tree-level amplitude and O(ǫ) denotes terms that vanish after we remove

the regularization. The reason why we formulate the relation in terms of logs will become

clear in section 6. In section 4 we demonstrate this duality for any n at one loop, and in

sections 5 and 6 we will show it for n = 4, 5 up to two loops.

4 From correlation functions to amplitudes: n points at one loop

In this section we perform the calculation of the one-loop correction to the correlation

function Gn according to the procedure of section 3.3.5 We use the Feynman rules from

appendix A.2. The harmonic superspace Feynman diagrams for the correlation function

with one extra point corresponding to the Lagrangian insertion are shown in figure 2.6

They are constructed from the two basic building blocks T and TT described in ap-

pendix A.3.2, combined with free hypermultiplet propagators (A.24). The block T shown

in figure 3(a) is the supersymmetric analog of the vertex correction 〈φ̄a(x1)Fµν
b (x0)φc(x2)〉

for two scalars and one gauge field strength. The main difference is that at the insertion

point we have only the self-dual part of the gauge field strength Fαβ = (σµν)αβFµν , as

well as the auxiliary field Y ij (see (A.13)); the scalar ϕ and the gluino λiα from (3.3) do

5Our result agrees with earlier calculations of one-loop correlation functions in [29–31, 50, 51].
6Notice that the graphs are drawn with a polygonal matter frame. Graphs based on the “zigzag”

configurations like in figure 1(b) are suppressed in the light-cone limit (2.6), after dividing out the leading

singularity of the tree-level correlation function (2.7).
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Figure 3. Building blocks for the graphs in figure 2. The single dot in (a) denotes a W insertion,

the double dot in (b) a Tr(W 2) insertion.

not have a cubic vertex with the external scalars. Since we are doing the calculation in

D = 4, the integral at the vertex can be easily computed yielding a rational expression. It

is obtained from the block (A.47) by setting the external θ+1 = θ+2 = 0:

〈q̃+a (x1, 0, u1)Wb(x0, θ0)q
+
c (x2, 0, u2)〉 = −2ig2fabc

(2π)4
(12)

x212
i12 (4.1)

with

i12 = x212
θ+0/1 · θ

+
0/2

(12)x210x
2
20

−
θ+0/1 · θ

−
0/1

x210
+
θ+0/2 · θ

−
0/2

x220
−
θ+0/1[x10, x20]θ

+
0/2

(12)x210x
2
20

. (4.2)

Here θ±0/r = θi0(ur)
±
i are the two U(1) projections of the SU(2) doublet θi0 with the har-

monics at point r and the notation was introduced for θ · θ ≡ θαθa and [x, y]α
β ≡

xαα̇y
α̇β − yαα̇x

α̇β = −2ixµyν(σµν)
β
α .

The second building block shown in figure 3(b) is the supersymmetric analog of the

propagator correction 〈φ̄(xk)φ(xk+1)〉, after integration over the insertion point. It is ob-

tained from the TT block (A.48) by identifying the insertion points 0 ≡ 0′ and by setting

θ+1 = θ+2 = 0:

〈q̃+a (x1, 0, u1)Tr(W 2)(x0, θ0)q
+
b (x2, 0, u2)〉 =

2g4Nc δab
(2π)6

(12)

x212
j12 (4.3)

with

j12 ≡ −(1−2−)

(12)

(θ+0/1)
2(θ+0/2)

2

x210x
2
20

=
1

2
(i12)

2 . (4.4)

Summing up all graphs (all sums are cyclic, k + n ≡ k) and integrating over the odd

variable θ0 at the insertion point (but not yet over the even x0), we find

Gn+1 =
2 g2N3

c

(2π)2(n+2)

(12)(23) · · · (n1)
x212x

2
23 · · ·x2n1

∫
d4θ0

(1
2

n∑

k,l=1; k 6=l

ik,k+1il,l+1 +
n∑

k=1

jk,k+1

)

=
a

2π2
G(0)

n

∫
d4θ0

( n∑

k=1

ik,k+1

)2
, (4.5)

– 14 –



J
H
E
P
1
2
(
2
0
1
1
)
0
0
2

where G
(0)
n is the leading singular part of the connected tree-level n-point correlation func-

tion defined in (3.7). In deriving (4.5) we have used the identity jkl =
1
2(ikl)

2.

The next step is to set the adjacent external points on the light cone, x2k,k+1 = 0, for

the ratio

lim
x2
i,i+1→0

Gn+1/G
(0)
n =

a

2π2
lim

x2
i,i+1→0

∫
d4θ0

( n∑

k=1

ik,k+1

)2
. (4.6)

We notice that for x212 → 0 the first term in i12, eq. (4.2), vanishes while the second and

the third terms cancel in the cyclic sum

n∑

k=1

ik,k+1 = −
n∑

k=1

θ+0/k[xk,0, xk+1,0]θ
+
0/k+1

(k, k + 1)x2k,0x
2
k+1,0

. (4.7)

Then, using the identity
∫
d4θ0 θ

α1i1
0 θα2i2

0 θα3i3
0 θα4i4

0 = −1

4

(
ǫi1i2ǫi3i4ǫα1α4ǫα2α3 − ǫi1i4ǫi2i3ǫα1α2ǫα3α4

)
, (4.8)

after some algebra we obtain

lim
x2
i,i+1→0

∫
d4θ0

(
n∑

k=1

ik,k+1

)2

= lim
x2
i,i+1→0

n∑

k, l=1

[(k, k+1)(l, l+1)]−1

x2k,0x
2
k+1,0x

2
l,0x

2
l+1,0

∫
d4θ0 θ

+
0/k[xk,0, xk+1,0]θ

+
0/k+1θ

+
0/l[xl,0, xl+1,0]θ

+
0/l+1

= lim
x2
i,i+1→0

n∑

k, l=1

{
2
(xk,0 · xl+1,0)(xk+1,0 · xl,0)− (xk,0 · xl,0)(xk+1,0 · xl+1,0)

x2k,0x
2
k+1,0x

2
l,0x

2
l+1,0

+ i
ǫµνλρx

µ
k,0x

ν
k+1,0x

λ
l,0x

ρ
l+1,0

x2k,0x
2
k+1,0x

2
l,0x

2
l+1,0

}
. (4.9)

The parity-odd terms in the last line deserve a special comment. They will subsequently

be integrated over the insertion point x0, according to (3.13). The resulting pseudo-scalar

integral will depend on the four external points xk, xk+1, xl, xl+1, which is not sufficient to

make a translation invariant pseudo-scalar. But in fact there is another reason why these

terms are suppressed by the integral over the insertion point. By inspecting the component

content of the inserted Lagrangian (3.12), we see that the pseudo-scalar terms are due to

the presence of the topological term iF F̃ . Such an insertion is a total space-time derivative

with respect to the insertion point, so the integral must vanish. The underlying reason

why the loop corrections to the correlation function Gn cannot contain parity odd terms

is that the fields φ in the operators O can be treated as true scalars (see appendix A.5).

We will come back to this point in section 6.

Further, replacing 2(xk,0 · xl+1,0) = x2k,0 + x2l+1,0 − x2k,l+1, etc. in (4.9) and using the

properties of the cyclic sum over k and l, we obtain

lim
x2
i,i+1→0

∫
d4θ0

(
n∑

k=1

ik,k+1

)2

=
1

2
lim

x2
i,i+1→0

n∑

k, l=1

x2k,l+1x
2
k+1,l − x2klx

2
k+1,l+1

x2k,0x
2
k+1,0x

2
l,0x

2
l+1,0

. (4.10)
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Notice that the numerator vanishes when k = l − 1, l or l + 1.

Up to now, we have done the entire tree-level calculation, including the light-cone limit,

in D = 4. The last step is to integrate over the insertion point,
∫
dDx0, with D = 4 − 2ǫ

and ǫ < 0, in order to regularize the divergences occurring when the integration point ap-

proaches any of the light-like segments [xi, xi+1]. We reiterate that this is not the natural

UV regularization (for which ǫ > 0), but it is what we call a dual infrared regularization.

This yields

lim
x2
i,i+1→0

∂

∂a

(
Gn/G

(0)
n

)∣∣∣∣
a=0

= − i

4π2
lim

x2
i,i+1→0

n∑

k, l=1

∫
dDx0

x2k,l+1x
2
k+1,l − x2klx

2
k+1,l+1

x2k,0x
2
k+1,0x

2
l,0x

2
l+1,0

.

(4.11)

To make a comparison with the amplitudes, it is instructive to rewrite the one-loop in-

tegral in the right-hand side of (4.11) in terms of dual momenta, eqs. (3.17) and (3.18).

Defining the D−dimensional loop momenta as ℓ = x0,k we find that, for general k and l

this space-time integral becomes the two-mass easy box momentum integral [41]

F (p, P, q,Q) = − i

4π2

∫
dDℓ (P 2Q2 − (p+ P )2(q +Q)2)

ℓ2(ℓ+ p)2(ℓ+ p+ P )2(ℓ−Q)2
, (p2 = q2 = 0) (4.12)

evaluated for p = xk,k+1, P = xk+1,l, q = xl,l+1 and Q = xl+1,k. When rewritten in terms

of these functions, the right-hand side of (4.11) coincides with twice the one-loop n-gluon

MHV amplitude (see eq. (4.19) in [41])

lim
x2
i,i+1→0

∂

∂a

(
Gn/G

(0)
n

)∣∣∣∣
a=0

= 2A(1)
n /A(0)

n = 2
∑

F (p, P, q,Q) . (4.13)

In conclusion, the one-loop n−point correlation function calculated by means of a La-

grangian insertion and in dual infrared dimensional regularization, reproduces the one-loop

n−particle amplitude expressed in terms of momentum integrals.

5 Four-point correlation functions and four-gluon amplitudes to two

loops

In this section we extend the one-loop duality from the previous section to two loops. We

show that the logarithm of the correlation function of four half-BPS operators of weight

two (bilinears), when put on the light cone using the dual IR regularization procedure,

becomes identical with the logarithm of the square of the four-gluon scattering amplitude.

5.1 Four-point correlation functions of bilinear half-BPS operators

Let us consider the correlation function of four protected N = 2 half-BPS complex opera-

tors (3.4)

G4 = 〈O(x1, u1)Õ(x2, u2)O(x3, u3)Õ(x4, u4)〉 . (5.1)
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It has been computed up to two loops in [32, 33]7 (we summarize the computation in

appendix A):8

G4 =
N2

c

(2π)8
(12)(23)(34)(41)

x212x
2
23x

2
34x

2
41

+
N2

c

(2π)8
2aR

x212x
2
23x

2
34x

2
41

g0(1, 2, 3, 4) (5.2)

+
N2

c

(2π)8
2a2R

x212x
2
23x

2
34x

2
41

[
1

2
(x212x

2
34 + x213x

2
24 + x214x

2
23)(g0(1, 2, 3, 4))

2

+ x212h0(1, 2, 3; 1, 2, 4) + x223h0(1, 2, 3; 2, 3, 4) + x234h0(1, 3, 4; 2, 3, 4)

+ x241h0(1, 2, 4; 1, 3, 4) + x213h0(1, 2, 3; 1, 3, 4) + x224h0(1, 2, 4; 2, 3, 4)

]
+O(a3) ,

where the one- and two-loop four-dimensional integrals in coordinate space are defined by

g0(1, 2, 3, 4) = c0

∫
d4x0

x210x
2
20x

2
30x

2
40

, (5.3)

h0(1, 2, 3; 1, 2, 4) = c20

∫
d4x0d

4x0′

(x210x
2
20x

2
30)x

2
00′(x

2
10′x

2
20′x

2
40′)

, (5.4)

with c0 = i/(2π2). A characteristic feature of the all-order loop corrections is the presence

of the universal harmonic-space-time polynomial prefactor

R = (12)2(34)2x214x
2
23 + (14)2(23)2x212x

2
34 + (12)(23)(34)(41)

[
x213x

2
24 − x212x

2
34 − x214x

2
23

]
.

(5.5)

This phenomenon was first revealed in [52] under the name “partial non-renormalization”.

Note that if the external points are in generic positions with x2ij 6= 0, the integrals

above are well defined in D = 4 and are manifestly conformally covariant. This allows us

to write them as functions of the conformal cross-ratios,

g0(1, 2, 3, 4) =
1

x213x
2
24

Φ(1)

(
x212x

2
34

x213x
2
24

,
x214x

2
23

x213x
2
24

)
,

h0(1, 2, 3; 1, 2, 4) =
1

(x212)
2x234

Φ(2)
(x214x223
x212x

2
34

,
x213x

2
24

x212x
2
34

)
, (5.6)

having well-known expressions in terms of classical polylogs (see, e.g., [46, 47]). In what fol-

lows we wish to take the light-cone limit x2i,i+1 → 0, which makes the integrals diverge. We

regularize them, mimicking the gluon scattering amplitudes, by modifying the dimension

of the integration measure to D = 4− 2ǫ (with ǫ < 0), thus giving up conformal invariance

g(1, 2, 3, 4) = cǫ

∫
dDx0

x210 x
2
20 x

2
30 x

2
40

,

h(1, 2, 3; 1, 2, 4) = c2ǫ

∫
dDx0 d

Dx0′

(x210 x
2
20 x

2
30)x

2
00′ (x

2
10′ x

2
20′x

2
40′)

, (5.7)

7The terminology of [32, 33] is based on the topology of the Feynman graphs, rather than on the

perturbative order of the correlation function. Thus, the lowest order (Born level) contribution is called

“one-loop”, and the contributions of order g2(ℓ−1) are called “ℓ-loop”.
8The Born approximation in (5.2) has a connected and a disconnected sectors (see [32, 33]), with different

color factors. Here we show only the connected contribution to the tree-level correlation function. Also,

the color factors are given in the large Nc approximation.
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where the normalization factor cǫ = 2i/(2π)2−2ǫ is introduced to simplify the final expres-

sions for the two-loop corrections.

5.2 Four-gluon amplitudes

We expect that the four-point correlation function (5.1) in the light-cone limit (2.6) is

related to the four-gluon planar MHV amplitude. The latter has been computed to two

loops in [20] and it has the following form:

A4 = A
(0)
4

[
1 + aM (1) + a2M (2) +O(a3)

]
, (5.8)

where A
(0)
4 is the tree-level amplitude and the loop corrections M (1) and M (2) are given by

M (1) = stI
(1)
4 (s, t) , M (2) = st

(
sI

(2)
4 (s, t) + tI

(2)
4 (t, s)

)
, (5.9)

where s = (p1 + p2)
2 and t = (p2 + p3)

2 are the Mandelstam variables. All gluons are

outgoing, so that their momenta satisfy the relations
∑4

1 pi = 0 and p2i = 0.

The one- and two-loop scalar box momentum integrals I
(1)
4 and I

(2)
4 in (5.9) are given by

I
(1)
4 (s, t) = cǫ

∫
dDk

k2(k − p1)2(k − p1 − p2)2(k + p4)2
, (5.10)

I
(2)
4 (s, t) = c2ǫ

∫
dDk dDl

k2(k − p1)2(k − p1 − p2)2(k + l)2l2(l − p4)2(l − p3 − p4)2
. (5.11)

These massless integrals are infrared divergent, therefore they are regularized dimensionally,

D = 4− 2ǫ with ǫ < 0. Switching from momenta to dual coordinates [17, 18], k = x1 − x0,

l = x0′ − x1 and pi = xi − xi+1 (with x5 ≡ x1) , we identify the pseudo-conformal integrals

from the correlation function with those from the amplitude (see figure 4):

I
(1)
4 (s, t) = g(1, 2, 3, 4) , I

(2)
4 (s, t) = h(1, 2, 3; 1, 3, 4) , I

(2)
4 (t, s) = h(1, 2, 4; 2, 3, 4) .

(5.12)

Then, the two-loop expression for the amplitude (5.8) can be rewritten as

A4/A
(0)
4 = 1 + a x213x

2
24g(1, 2, 3, 4) + a2 x213x

2
24

[
x213 h(1, 2, 3; 1, 3, 4) + x224 h(1, 2, 4; 2, 3, 4)

]
.

(5.13)

5.3 Duality correlator/amplitude

For the purpose of comparing correlation functions and amplitudes, we define the ratio of

the correlation function and its Born-level expression:

G4/G
(0)
4 = 1+

2R
(12)(23)(34)(41)

(5.14)

×
{
a g(1, 2, 3, 4) + a2

[
1

2
(x212x

2
34 + x213x

2
24 + x214x

2
23)(g(1, 2, 3, 4))

2

+ x212h(1, 2, 3; 1, 2, 4) + x223h(1, 2, 3; 2, 3, 4) + x234h(1, 3, 4; 2, 3, 4)
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g(1, 2, 3, 4) ↔ I
(1)
4 (s, t) h(1, 2, 3; 1, 3, 4) ↔ I

(2)
4 (s, t)

00 0′

11

22

33

4 4

11

22 33

44

Figure 4. One- and two-loop pseudo-conformal integrals contributing to the correlation function

G4, eq. (5.1), and to the amplitude A4, eq. (5.8). The diagrams with solid lines depict Feynman

integrals in x−space. The diagrams with dashed lines represent the same integral in the dual

momentum space. The straight labels correspond to the points xi, the slanted labels correspond to

the momenta pi = xi − xi+1.

+ x241h(1, 2, 4; 1, 3, 4) + x213h(1, 2, 3; 1, 3, 4) + x224h(1, 2, 4; 2, 3, 4)

]
+O(a3)

}
.

Next, we wish to evaluate this ratio on the light cone, i.e. with

x212 = x223 = x234 = x241 = 0 . (5.15)

From (5.5) we see that the prefactor R/[(12)(23)(34)(41)] in (5.14) is reduced to x213x
2
24.

Further, most of the two-loop h−integrals do not contribute to the right-hand side of (5.14)

due to vanishing kinematic prefactors like x212. The result is

lim
x2
i,i+1→0

G4/G
(0)
4 = 1+2a x213x

2
24g(1, 2, 3, 4) + a2

[(
x213x

2
24g(1, 2, 3, 4)

)2

+ 2x213x
2
24

(
x213h(1, 2, 3; 1, 3, 4) + x224h(1, 2, 4; 2, 3, 4)

)]
+O(a3) .

(5.16)

Comparing this result with the perturbative expansion of the amplitude, eq. (5.13), we

obtain

lim
x2
i,i+1→0

G4/G
(0)
4 =

(
A4/A

(0)
4

)2
+O(a3) , (5.17)

confirming the general statement (3.19).

We recall that G4 was defined in (5.1) as the correlation function of operators (2.3)

bilinear in the scalar fields. The duality (5.17) can be extended to correlation functions of

half-BPS operators O = Tr(φk) of arbitrary weight k, see appendix B.

6 Five-point correlation functions and five-gluon amplitudes to two loops

In this section we extend the previously found duality between dual-IR-regularized cor-

relation functions and gluon MHV amplitudes to the case of five points/gluons. This is
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a rather non-trivial test, in view of the significantly more complicated integrals involved.

Also, we explain why the duality should be formulated in terms of logs, rather than the cor-

relator/amplitude themselves. The reason is in the parity-odd (pseudo-scalar sector) of the

amplitude, which is reduced to O(ǫ) terms by taking the log. This is essential for the duality

to work, because the correlation function must be a true scalar, as we argue in appendix A.5.

We consider the correlation function of n = 5 half-BPS operators of weight k = 2,

G5 = 〈O(1)Õ(2)O(3)Õ(4)Ô(5)〉 , (6.1)

where the local scalar operators O, Õ and Ô are the bottom components of the hypermul-

tiplet bilinears

O(i) = Tr(q+q+) , Õ(i) = Tr(q̃+q̃+) , Ô(i) = 2Tr(q̃+q+) . (6.2)

Here the arguments of the operators i = (xi, u
+
i ) denote the set of space-time and harmonic

coordinates of the hypermultiplet scalar fields, q+(i)|θ=0 = φr(xi)u
+
ir and q̃+(i)|θ=0 =

φ̄r(xi)u
+
ir (with r = 1, 2). We wish to examine the correlation function (6.1) in the limit

x2i,i+1 ≡ (xi − xi+1)
2 → 0 , xi+5 ≡ xi . (6.3)

In this limit, the leading asymptotic behavior of the tree-level correlation function is given

by the product of free scalar propagators

G
(0)
5 =

N2
c

(2π)10
(12)(23)(34)(45)(51)

x212x
2
23x

2
34x

2
45x

2
51

+ . . . , (6.4)

where the ellipses denote subleading terms as x2i,i+1 → 0. Notice that the obvious symme-

try of the correlation function (6.1) under the exchange of operators, 1 ↔ 3 and 2 ↔ 4, is

lost in the light-cone limit. At loop level, the correlation function (6.1) turns out to have

the same leading singularity as the tree G
(0)
5 . This suggests to study the following ratio in

the light-cone limit (6.3),

FG ≡ lim
x2
i,i+1→0

ln
(
G5/G

(0)
5

)
= aF

(1)
G (xi) + a2F

(2)
G (xi) +O(a3) , (6.5)

where a = g2Nc/(8π
2) and F

(p)
G (xi) are scalar functions of xi only. The rationale for

considering the log of the ratio of correlation functions in the left-hand side of (6.5) is

that, firstly, it does not receive a contribution at O(a0) and, secondly, as we will argue

below, it has a much simpler form. Computing F
(1)
G (xi) and F

(2)
G (xi) we shall follow the

same routine as before, that is, we shall expand F
(p)
G (xi) over a basis of one- and two-loop

pseudo-conformal integrals in D = 4 dimensions, and then regularize them by modifying

the integration measure at the Lagrangian insertion points to D = 4 − 2ǫ dimensions,

d4x0 → d4−2ǫx0, with ǫ < 0.

In section 4 we have demonstrated that the one-loop correction in (6.5) is given by

F
(1)
G (xi) = x213x

2
24g(1, 2, 3, 4) + (cyclic) , (6.6)
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where g(1, 2, 3, 4) is the one-loop pseudo-conformal “cross” integral in (6.8); (cyclic) means

the four non-trivial cyclic permutations, i 7→ i + 1, of the points {1, 2, 3, 4, 5}. The two-

loop correction F
(2)
G is computed in appendix A.4, using the method of double Lagrangian

insertions in harmonic superspace. The result is the following expression:

F
(2)
G =x213 x

2
24

[
2x213 h(1, 2, 3; 1, 3, 4) + 2x224 h(1, 2, 4; 2, 4, 3)− x214 h(1, 2, 4; 1, 3, 4)

]

+ x213 x
2
14 x

2
25 [2h(1, 2, 5; 1, 3, 4) − h(1, 2, 3; 1, 4, 5) − h(1, 2, 4; 1, 3, 5)]

+ x224 x
2
35

[
2x225 p(1; 2, 5; 3, 4) − x224 p(1; 2, 4; 3, 5) − x235 p(1; 3, 5; 2, 4)

]

− 1

2
[x213x

2
24g(1, 2, 3, 4)]

2 − x213 x
2
24 g(1, 2, 3, 4) x

2
13 x

2
25 g(1, 2, 3, 5) + (cyclic) , (6.7)

where the cyclic permutations act on the entire sum of terms. Here we use the dimensionally

regularized integrals (5.7) together with

p(1; 2, 3; 4, 5) = c2ǫ

∫
dDx0 d

Dx0′ x
2
10′

(x210 x
2
20 x

2
30)x

2
00′ (x

2
20′ x

2
30′ x

2
40′ x

2
50′)

, (6.8)

where D = 4 − 2ǫ with ǫ < 0 and the normalization factor cǫ = 2i/(2π)2−2ǫ is introduced

to simplify the final expressions for the two-loop corrections. Switching to dual momenta

pi = xi − xi+1, we find that the g−, h− and p−integrals correspond to the scalar box,

double-box and penta-box momentum integrals of ref. [42], respectively.

6.1 Five-gluon MHV amplitude

We expect that in the light-cone limit (6.3) the five-point correlation function (6.1) is

related to the five-gluon planar MHV amplitude. The latter has been computed to two

loops in [42] and it has the form

A5 = A
(0)
5

[
1 + aM (1) + a2M (2) +O(a3)

]
, (6.9)

where A
(0)
5 is the tree five-gluon MHV amplitude. Here the one- and two-loop corrections

are given by the following expressions

M (1) =
1

2

∑

cyclic

s12s23I
(1)
a +M

(odd)
1 ,

M (2) =
1

2

∑

cyclic

[
s212s23I

(2)
a + s212s15I

(2)
b + s12s34s45I

(2)
c

]
+M

(odd)
2 , (6.10)

where sij = (pi + pj)
2 is the invariant mass of the gluons with labels i and j. All gluons

are considered outgoing, so that their momenta satisfy the relations
∑5

1 pi = 0 and p2i = 0.

Further, I
(1)
a is a one-loop and I

(2)
a , I

(2)
b , I

(2)
c are two-loop planar scalar integrals

depending on the gluon momenta, eqs. (5.10) and (5.11). Switching to dual coordinates,

pi = xi − xi+1, these integrals can be expressed in terms of the basis integrals (6.8):

I(1)a = g(1, 2, 3, 4) , I(2)a = h(1, 3, 2; 1, 3, 4) ,

I
(2)
b = h(1, 3, 2; 1, 3, 5) , I(2)c = p(2; 1, 3; 4, 5) . (6.11)
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Finally, M
(1)
odd and M

(2)
odd in (6.10) stand for the parity-odd contributions to the five-

gluon MHV amplitude, proportional to the pseudo-scalar ǫ(p1, p2, p3, p4). The one-loop

parity-odd contribution M
(1)
odd is of order O(ǫ), whereas M

(2)
odd has a simple pole 1/ǫ. The

residue at this pole is proportional to the product of the one-loop parity-even and parity-

odd parts. As a consequence, the parity-odd contribution can be significantly simplified

by considering the logarithm of the ratio A5/A
(0)
5 , as shown in [42]. Namely, we introduce

the following ratio function

FA ≡ ln
(
A5/A

(0)
5

)2
= aF

(1)
A + a2F

(2)
A +O(a3) , (6.12)

F
(1)
A = 2M (1) , F

(2)
A = 2M (2) − (M (1))2 .

The main advantage of (6.12) is that, unlike the amplitude itself, the parity-odd contribu-

tions to F
(1)
A and F

(2)
A vanish as ǫ→ 0. Replacing M (1) and M (2) in (6.12) by their explicit

expressions (6.10) and going to dual coordinates pi = xi − xi+1, we obtain (up to terms

vanishing as ǫ→ 0)

F
(1)
A =x213x

2
24g(1, 2, 3, 4) + (cyclic) , (6.13)

F
(2)
A =x413x

2
24h(1, 2, 3; 1, 3, 4) + x424x

2
13h(1, 2, 4; 2, 3, 4) + x224x

2
25x

2
35p(1; 2, 5; 3, 4)

− 1

4
[x213x

2
24g(1, 2, 3, 4)]

2 − 1

2
x213x

2
24g(1, 2, 3, 4)x

2
24x

2
35g(2, 3, 4, 5)

− 1

2
x213x

2
24g(1, 2, 3, 4)x

2
35x

2
14g(3, 4, 5, 1) + (cyclic) . (6.14)

Here g, h and p stand for the dimensionally regularized integrals defined in (6.8).

Although the explicit expressions for individual two-loop integrals in (6.14) are quite

complicated, their sum F
(2)
A can be found in a closed form thanks to the remarkable duality

between MHV amplitudes and light-like Wilson loops [4–7]. This duality allows us to

formulate the dual conformal Ward identity for FA to all loops [9]. For five points it has a

unique solution (up to an additive constant) which coincides with the BDS ansatz [20].

6.2 Duality correlator/amplitude

Assuming the duality relation (3.19), the correlation function on the light cone should be

related to the scattering amplitude

lim
x2
i,i+1→0

ln
(
G5/G

(0)
5

)
= ln

(
A5/A

(0)
5

)2
+O(ǫ) . (6.15)

In terms of the functions FG and FA introduced in (6.5) and (6.12), this relation implies

that up to terms vanishing for ǫ→ 0

F
(1)
A = F

(1)
G , F

(2)
A = F

(2)
G , . . . (6.16)

The first of these relations follows immediately from the explicit one-loop expressions (6.13)

and (6.6). At two loops, F
(2)
A and F

(2)
G are given by two seemingly different expressions,

eqs. (6.14) and (6.7), respectively. Then, for the duality relation (6.16) to hold, the two-loop

integrals in (6.14) and (6.7) should satisfy a very non-trivial identity.
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Figure 5. Two-loop pseudo-conformal integrals of different topologies contributing to the corre-

lation function G5, eq. (6.7), and to the amplitude A5, eq. (6.14). The diagrams with solid lines

depict Feynman integrals in x−space. The diagrams with dashed lines represent the same integral

in the (dual) momentum space pi = xi − xi+1. In the latter case, (−k) stands for the particle with

momentum (−pk). Thin solid lines denote numerators in the x−integral. In momentum space, this

numerator is given by the squared sum of the momenta flowing through the arrowed dashed lines.

To begin with, let us examine the topology of the Feynman integrals in the two-loop

expression for F
(2)
A and F

(2)
G . By construction, the planar MHV amplitude A5 receives con-

tributions from planar Feynman diagrams only. However, taking the log of the two-loop

amplitude (6.9), we find that F
(2)
A contains an admixture of products of one-loop integrals

in (6.14). For the correlation function the situation is different. The diagrammatic rep-

resentation of F
(2)
G is shown in figure 5. We observe that the expression for F

(2)
G involves
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two-loop integrals of the same type as those contributing to F
(2)
A , eq. (6.14). Closer ex-

amination shows, however, that the external points in these integrals, x1, . . . , x5, are not

(anti)clock-wise ordered and, therefore, these integrals do not contribute to the planar am-

plitude F
(2)
A . Still, they contribute to the two-loop planar correlation function. This is due

to the different realizations of the planarity condition for correlation functions and scatter-

ing amplitudes. For the latter, the planar diagrams have the topology of a disk, while for

the former they have the topology of a sphere (see figure 7 in appendix A.3.2 for an exam-

ple). Despite of this, the expected duality relation F
(2)
A = F

(2)
G suggests that the two sums

of two-loop integrals of different topologies, eqs. (6.7) and (6.14), are equal to each other.

We can apply the relation pi = xi−xi+1 to rewrite the Feynman integrals contributing

to F
(2)
G as conventional momentum integrals, as shown in figure 5. The absence of cyclic

ordering of the external points xi leads to an unusual feature of the resulting momentum in-

tegrals: They involve seven external legs including one pair of legs with opposite momenta,

pi and (−pi).

6.2.1 Soft limit

There exists a simple way to test the duality relations (6.15) and (6.16) by examining

them in the special limit x4 → x5. For the amplitude, this corresponds, e.g., to the soft

limit p4 = x45 → 0 when one of the external gluon momenta vanishes. In this limit,

the dimensionally regularized five-gluon MHV amplitude A5 reduces to the four-gluon

amplitude A4 in such a way that the ratio function (6.12) takes the form

lim
x4→x5

FA = ln
(
A4/A

(0)
4

)2
. (6.17)

For the correlation function (6.1), the limit x4 → x5 corresponds to its short distance

asymptotic behavior. In this limit, we apply the operator product expansion Õ(4)Ô(5) ∼
〈φ̄+(4)φ+(5)〉Õ(4) + . . ., where 〈φ̄φ〉 is a free scalar field propagator in D = 4 − 2ǫ di-

mensions, and the dots denote subleading terms. In this way, we find from (6.5) that

the ratio of the 5-point correlation functions reduces to the ratio of the 4-point ones

G(1, 2, 3, 4) = 〈O(1)Õ(2)O(3)Õ(4)〉,

lim
x4→x5

FG = lim
x2
i,i+1→0

ln

(
G(1, 2, 3, 4)

G(0)(1, 2, 3, 4)

)
, (6.18)

where the light-cone limit in the right-hand side corresponds to x212, x
2
23, x

2
34, x

2
41 → 0.

Let us verify (6.17) using the expression for the two-loop ratio function (6.12). We recall

that, by definition, the adjacent points in dual space are light-like separated, x2i,i+1 = 0. In

the soft limit x4 → x5 we find the additional relations x235 → 0 and x241 → 0. Notice that

the dimensionally regularized g−, h− and p−integrals, eq. (6.8), remain finite as x4 → x5.

The expression for FA simplifies because some of these integrals are multiplied by x235 and

x241, so they do not contribute in the soft limit. Thus, the pentabox integral p drops out:

lim
x4→x5

F
(2)
A = 2x413x

2
24h(1, 3, 2; 1, 3, 4) + 2x424x

2
13h(2, 4, 1; 2, 4, 3)− [x213x

2
24g(1, 2, 3, 4)]

2 .

(6.19)
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Using eq. (5.13), we verify that the expression in the right-hand side of (6.19) coincides with

the two-loop correction to the ratio of four-gluon amplitudes 2 ln(A4/A
(0)
4 ), in agreement

with (6.17).

In a similar manner, we examine the ratio function F
(2)
G and simplify the expres-

sion (6.7) in the limit x4 → x5. We find that, unlike the case of F
(2)
A , the pentabox inte-

grals have a non-vanishing contribution which can be expressed in terms of h−integrals.

For instance,

−x224 x235x235 p(1; 3, 5; 2, 4) + (cyclic)
x4→x5→ −b(1, 2, 3, 4)− x413x

2
24h(1, 3, 2; 1, 3, 4) , (6.20)

where the notation was introduced for the ‘bad’ integral b(1, 2, 3, 4) =

x424x
2
13h(2, 3, 1; 2, 4, 4), which does not have an interpretation in terms of two-loop four-

particle planar momentum integrals. The same ‘bad’ integral comes from h(1, 2, 5; 1, 3, 4)

and p(1; 2, 4; 3, 5) and their cyclic images. We find that b(1, 2, 3, 4) cancels in the sum of

all terms in the right-hand side of (6.7) as x4 → x5, leading to

lim
x4→x5

F
(2)
G = 2x413x

2
24h(1, 3, 2; 1, 3, 4) + 2x424x

2
13h(2, 4, 1; 2, 4, 3)− [x213x

2
24g(1, 2, 3, 4)]

2 .

(6.21)

Again, we verify that the expression in the right-hand side coincides with the ratio of

four-point correlation functions (6.18).

Comparing (6.19) and (6.21), we conclude that the two-loop corrections to FA and FG

coincide in the soft limit x4 → x5,

lim
x4→x5

(
F

(2)
A − F

(2)
G

)
= 0 . (6.22)

In the next subsection we argue that for arbitrary xi the difference F
(2)
A −F (2)

G is a constant.

Together with (6.22) this immediately implies that F
(2)
A = F

(2)
G , as announced in (6.16).

6.2.2 Conformal symmetry and proof of the integral identity

As was already mentioned, the duality relation F
(2)
A = F

(2)
G implies an identity between

two-loop integrals of various topologies. Evaluating the difference F
(2)
A − F

(2)
G with the

help of (6.7) and (6.14) and equating it to zero, we formulate the identity that we expect

to find as follows:

0 =x213 x
2
24

[
x213 h(1, 2, 3; 1, 3, 4) + x224 h(1, 2, 4; 2, 3, 4)− x214 h(1, 2, 4; 1, 3, 4)

]

+ x213 x
2
14 x

2
25 [2h(1, 2, 5; 1, 3, 4) − h(1, 2, 3; 1, 4, 5) − h(1, 2, 4; 1, 3, 5)]

+ x224 x
2
35

[
x225 p(1; 2, 5; 3, 4) − x224 p(1; 2, 4; 3, 5) − x235 p(1; 3, 5; 2, 4)

]

− 1

4
[x213x

2
24g(1, 2, 3, 4)]

2 +
1

2
x213x

2
24g(1, 2, 3, 4)x

2
24x

2
35g(2, 3, 4, 5)

− 1

2
x213x

2
24g(1, 2, 3, 4)x

2
35x

2
14g(1, 3, 4, 5) + (cyclic) . (6.23)

In the previous subsection we showed that this relation holds in the soft limit.

The proof of (6.23) goes as follows. The Feynman integrals in (6.23) are regularized

dimensionally with D = 4−2ǫ. We will first show that the sum of Feynman integrals in the
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right-hand side of (6.23) is finite as ǫ→ 0. This will allow us to remove the regulator, i.e. to

restore the D = 4 integration measure. Since all integrals we are dealing with are pseudo-

conformal, the expression in the right-hand side of (6.23) will thus become an exactly

conformally invariant function of x1, . . . , x5. Since one cannot construct conformal cross-

ratios from the five external points with light-like separated neighbors x2i,i+1 = 0, conformal

invariance will imply that the right-hand side of (6.23) is a constant. We have already seen

that the right-hand side of (6.23) vanishes in the soft limit, so the constant must be zero.

The direct way to prove finiteness is to evaluate the pole part of (6.23) by the

Mellin-Barnes (MB) method (see, e.g., [53]) using the package [54] for the ǫ-expansion

and evaluation of the representations. At O(1/ǫ4) through O(1/ǫ2) the program finds only

one-parameter integrals which we have analytically evaluated. At 1/ǫ4 and 1/ǫ3 one has

to show the cancelation of rational numbers and simple logarithms, respectively, which

was in either case immediate. At 1/ǫ2 we needed Landen’s identity on dilogarithms, but

once again the proof was ultimately simple. With our MB representations, the highest

integrals contributing to the simple pole in ǫ were of dimension four (from the pentabox).

The precision of the numerical evaluation used by the package [54] was therefore good: For

all kinematic points in our (rather general) sample set we obtained values like 0.00(2)/ǫ.

Within the given accuracy the sum of integrals is seen to be finite.9 As we have just

explained, the finiteness of the integral implies that it equals zero since a non-vanishing

constant part is ruled out by the soft limit.

Alternatively, we can show finiteness analytically by combining the sum of integrals

in (6.23) into a single integral of the form

r.h.s. of eq.(6.23) =

∫
dDx0d

Dx0′ P (x0, x0′ ;xi)

(x210 . . . x
2
50)(x

2
10′ . . . x

2
50′)x

2
00′

, (6.24)

where, by construction, the polynomial P (x0, x0′ , xi) is invariant under cyclic shifts of the

external points xi (with i = 1, . . . , 5) and under the exchange of the integration points

x0 ↔ x0′ . Each integral in (6.23) gives a contribution to P (x0, x0′ , xi) in the form of a

product of seven distances x2ij with various choices of indices i and j. For instance, the third

h−integral in the first line of (6.23) produces the contribution (−x213x214x224x230x250x220′x250′),
while the contribution of the cross-product of one-loop integrals in the last line of (6.23)

looks as (−1
2x

2
13x

2
24x

2
14x

2
35x

2
50x

2
20′x

2
00′). To save space, we do not present the explicit

expression for P (x0, x0′ ;xi). Due to the pseudo-conformal property of the integrals

in (6.23), the polynomial P (x0, x0′ , xi) is covariant under conformal transformations with

weight (−4)10 at points x0 and x0′ . Given the weight (+8) of the denominator, and if

the integration measures can be made four-dimensional, the integral will be conformally

covariant, as stated above.

Let us identify the potential divergences of the integral (6.24). They could only come

from the part of the phase space of x0 and x0′ , in which some of the propagators in the

denominator of (6.24) vanish simultaneously. Notice that upon the change of variables,

9An analytical proof of the absence of the simple pole, too, should be feasible given the relatively low

dimensionality of the MB-integrals.
10We use the standard convention that the scalar propagator has weight (+1).
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p1 = x12, . . . , p5 = x51 (with p2i = 0) supplemented with k = x10 and k′ = x10′ , the

integral (6.24) can be rewritten as a conventional two-loop momentum-space Feynman

integral with k and k′ being the loop momenta and p1, . . . , p5 defining the external leg

momenta. It is well known that infrared divergences originate from integration over the

loop momenta collinear to the light-like momenta of the external legs. For instance, suppose

that kµ is collinear either to pµ1 and to pµ2 . To analyze the divergences, it is convenient to

employ the so-called Sudakov decomposition of the loop momentum,

kµ ≡ xµ10 = αpµ1 + βpµ2 + kµ⊥ , (6.25)

where α, β are scalar variables and kµ⊥ are two-dimensional transverse momenta, (k⊥p1) =

(k⊥p2) = 0. In terms of Sudakov’s variables, the x0−integral in (6.24) takes the form

∫
d4x0

x201x
2
20x

2
30

[
. . .
]
=

∫
x213 dαdβd

2k⊥
[
. . .
]

(x213αβ − k2⊥)(x
2
13(1− α)β + k2⊥)(x

2
13α(1− β) + k2⊥)

, (6.26)

where [. . .] denotes the remaining terms in the right-hand side of (6.24).

It is easy to see that the integral (6.26) develops logarithmic divergences originating

from the integration region

x213αβ − k2⊥ = O(ρ2) , k⊥ = O(ρ) (6.27)

with ρ → 0. Depending on the hierarchy between α and β we can distinguish three

subregions: For α, β = O(ρ) we have kµ = O(ρ), for α = O(ρ0), β = O(ρ2) we have

kµ = αpµ1 + O(ρ) and, finally, for α = O(ρ2), β = O(ρ0) we have kµ = βpµ2 + O(ρ). In

terms of the dual x−variables, this corresponds to the limit where the integration point

x0 approaches either the external point, x0 → x1, or one of the light-like segments [x1, x2]

and [x2, x3], respectively. Due to the cyclic symmetry of the integral (6.24), divergences

are also produced when x0 approaches the other cusp points xi and the light-like segments

[xi, xi+1]. The same analysis applies to the integral with respect to x0′ .

Then, for the integral (6.26) to be finite, the expression inside [. . .] should be finite

and, in addition, it should vanish in the region (6.27). This leads in its turn to the

condition for the polynomial P (x0, x0′ , xi) in the right-hand side of (6.24) to vanish

sufficiently fast when x0 and/or x0′ approach one the potentially dangerous regions

explained above. We return to (6.24) and verify that the polynomial P (x0, x0′ ;xi) indeed

satisfies this condition. Thus, the integral (6.24) remains finite as ǫ → 0. Together with

conformal invariance this immediately leads to the identity (6.23).

7 Conclusions

The main result of this paper is the observation that computing the loop corrections to

the correlation functions of protected operators by the Lagrangian insertion method, and

taking the light-cone limit, gives us the integrands of the MHV gluon scattering amplitudes

in the dual momentum space. These integrands can be evaluated directly in four dimensions

since they are finite and explicitly (dual) conformally covariant. The divergences appear
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in the integrals over the insertions points for the correlation function (UV divergences) or,

equivalently, over the loop momenta for the amplitude (IR divergences). In order to achieve

an exact matching of the two objects, we need to dimensionally regularize the theory, not as

one would do for a correlation function computation in coordinate space, but in the way that

is natural for the dual theory in momentum space. We call this dual infrared regularization.

At present we have no understanding of the field-theory mechanism responsible for this

surprising relation between two seemingly very different objects. In fact, the surprise is not

total, since we already know that MHV amplitudes are dual to light-like Wilson loops. The

latter, as shown in [39], are intimately related to correlation functions in the light-cone limit.

Further tests are needed to confirm our conjecture. In particular, a crucial test will

be the calculation of the six-point correlation function at two loops and its comparison to

the six-gluon amplitude. This is similar to the test of the Wilson loop/amplitude duality

at six points and two loops [10, 11]. Before it, one could suspect that the matching of

the four- and five-point objects was simply due to (dual) conformal symmetry, which

fixes their form completely. As we saw in our five-point two-loop correlation function

computation in section 6, conformal symmetry plays an important role here too. However,

at six points it will not be sufficient to explain the matching, if it is confirmed.

The Lagrangian insertion procedure described here can give us a simple way to compute

the integrands that determine the higher-loop corrections to amplitudes. We would like to

emphasize that our one- and two-loop correlation function computations involve a handful

of Feynman graphs. This is in striking contrast to the huge number of graphs needed, if one

would attempt to do a straightforward amplitude calculation (not using unitarity methods).

The fact that the integrand of the amplitude can be obtained from a tree-level com-

putation raises the hope that one might be able to profit from some hidden enhanced

symmetry of the tree-level correlation function. This is motivated by the analogy with

the tree-level scattering superamplitudes, which are known to have a dynamical symmetry

called dual conformal symmetry [55–57]. If something similar exists also for the correlation

functions, it might eventually lead us to the integrability of the loop amplitudes.

A related issue is the observation that the correlation functions we have discussed

enjoy the full superconformal symmetry of the N = 4 SYM theory. In this paper we have

explored the lowest scalar components of the supersymmetric correlation functions, and

we have shown that they match the gluon MHV amplitudes. The question arises if the

correlation function defined in superspace has some relation to the superamplitude, and

thus possibly to non-MHV amplitudes.
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A Lagrangian insertion procedure in N = 2 harmonic superspace

In this appendix we give a very brief overview of harmonic superspace, in particular of

the Feynman rules we need here. More details can be found in [48, 49, 58, 59]. We then

summarize the Lagrangian insertion procedure, developed in [32, 33, 60] for the case of

four-point correlation functions. Finally, we explain how to adapt this procedure to five

(and more) points.

A.1 N = 4 SYM in N = 2 terms

The basic ingredients of the N = 4 SYM theory in N = 2 terms are the hypermultiplet

and the super-Yang-Mills (SYM, or vector) multiplet. The N = 4 SYM action consists of

two terms:

SN=4 SYM = SN=2 SYM + SHM . (A.1)

Below we give a short description of each multiplet and its action.

A.1.1 N = 2 hypermultiplet in harmonic superspace

TheN = 2 massless matter (or hyper)multiplet consists of an R-symmetry SU(2) doublet of

complex scalars φi(x) (with i = 1, 2) and of two Majorana spinors and SU(2) sunglets ψα(x),

ψ̄α̇(x) and κα(x), κ̄α̇(x). Their supersymmetry transformations close only on shell. Going

off shell requires the introduction of an infinite set of auxiliary fields [48]. This is achieved

by extending the space-time by two extra compact dimensions in the form of a sphere S2.

The latter is described in terms of harmonic variables u±i which form a matrix of SU(2),

‖ u ‖ ∈ SU(2) : u+iu−i = 1 , u+i = u−i ≡ ǫiju
−j , ǫ12 = −ǫ12 = 1 , (A.2)

and parametrise the sphere S2 ∼ SU(2)/U(1). A harmonic function f (q)(u±) of U(1)

charge q is a function of u±i invariant under the action of the group SU(2) (which rotates

the index i of u±i) and homogeneous of degree q under the action of the group U(1)

(which rotates the index ± of u±i). Such functions have infinite harmonic expansions on

S2 whose coefficients are SU(2) tensors (multispinors).

In this framework the hypermultiplet is described by a harmonic superfield q+(x, θ, θ̄, u)

of U(1) charge +1 satisfying the Grassmann (or G-)analyticity constraints

D+
α q

+ = D̄+
α̇ q

+ = 0 , (A.3)

where

D+
α = Di

αu
+
i , D̄+

α̇ = D̄i
α̇u

+
i (A.4)
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and Di
α, D̄

i
α̇ are the usual supersymmetric spinor derivatives. These constraints can be

solved explicitly in the G-analytic basis in superspace

xαα̇A = xαα̇ − 4iθα(iθ̄α̇j)u+i u
−
j , θ±α,α̇ = u±i θ

i
α,α̇ (A.5)

where xαα̇ = xµσαα̇µ and (ij) means weighted symmetrization. In this basis q+ becomes a

function of θ+, θ̄+ only, i.e., a G-analytic superfield q+(xA, θ
+, θ̄+, u).

As mentioned earlier, the N = 2 supermultiplet can exist off shell because an infinite

number of auxiliary fields (coming from the harmonic expansion on S2) are present. On

shell these auxiliary fields are eliminated by the harmonic (or H-)analyticity condition

(equation of motion)

D++q+ = 0 . (A.6)

Here D++ is the harmonic derivative on S2 (the raising operator of the group SU(2)

realized on the U(1) charges, D++u+ = 0, D++u− = u+). In the G-analytic basis (A.5)

it becomes a supercovariant operator involving space-time derivatives:

D++ = u+i ∂

∂u−i
− 4iθ+αθ̄+α̇ ∂

∂xαα̇A
. (A.7)

It is then easy to show that the free on-shell hypermultiplet becomes an “ultrashort”

superfield:

q+(xA, θ
+, θ̄+, u) = φi(xA)u

+
i + θ+αψα(xA) + θ̄+α̇ κ̄

α̇(xA) + 4iθ+σµθ̄+∂µφ
i(xA)u

−
i ,(A.8)

where the physical scalars φi and spinors ψα, κ̄
α̇ satisfy their massless field equations

�φi(x) = /ψ = /̄κ = 0 .

The equation of motion (A.6) can be derived from an action given by an integral over

the G-analytic superspace:

SHM = −2

∫
dud4xAd

2θ+d2θ̄+ Tr
(
q̃+D++q+

)
. (A.9)

Here q̃+(xA, θ
+, θ̄+, u) is the conjugate of q+. The conjugation ˜ combines usual complex

conjugation with the antipodal map on S2 in a way to preserve G-analyticity. This action

is real (with respect to the ˜ conjugation) which can be seen by integrating D++ by

parts. In this sense the action (A.9) resembles the Dirac action for fermions, although the

superfield q+ is bosonic.

A.1.2 N = 2 SYM multiplet in harmonic superspace

The N = 2 SYM gauge potential is introduced by covariantizing the action (A.9) with

respect to a Yang-Mills group with G-analytic parameters λ(xA, θ
+, θ̄+, u). To this end

one replaces the harmonic derivative in (A.9) by the following covariant one:

D++ → D++ + igV ++(xA, θ
+, θ̄+, u) , (A.10)
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where g is the gauge coupling constant. The gauge potential is described by a real (Ṽ ++ =

V ++) G-analytic superfield of charge +2 (equal to the charge of D++). The matter and

gauge superfields are subject to the usual gauge transformations:

q+
′
= eigλq+ , V ++′

= − i

g
eigλD++e−igλ + eigλV ++e−igλ , (A.11)

so that the covariantized action (A.9)

SHM/SYM = −2

∫
du d4xAd

2θ+d2θ̄+ Tr(q̃+D++q+ + ig q̃+V ++q+) (A.12)

is indeed gauge invariant.

In the non-supersymmetric Wess-Zumino gauge the gauge potential has the component

expansion

V ++
WZ (xA, θ

+, θ̄+, u) = −2iθ+σµθ̄+Aµ(xA)− i
√
2(θ+)2ϕ̄(xA) + i

√
2(θ̄+)2ϕ(xA) (A.13)

+ 4(θ̄+)2θ+αλiα(xA)u
−
i − 4(θ+)2θ̄+α̇ λ̄

α̇i(xA)u
−
i + 3(θ+)2(θ̄+)2Y ij(xA)u

−
i u

−
j ,

containing the fields of the N = 2 off-shell vector multiplet: the gauge field Aµ, the

complex physical scalar ϕ, the doublet of Majorana gluinos λiα, λ̄
α̇i and the triplet of real

auxiliary fields Y ij .

The gauge invariant action for V ++ can be written down either directly in terms of

V ++ [49, 58, 59], or in terms of the chiral superfield strength W (xL, θ
iα) (or its conjugate

antichiral W̄ (xR, θ̄iα̇)):

SN=2 SYM =
1

2g2

∫
d4xLd

4θ TrW 2 =
1

2g2

∫
d4xRd

4θ̄ Tr W̄ 2 , (A.14)

where

xαα̇L = xαα̇ − 2iθiαθ̄α̇i (A.15)

are the space-time coordinates in the chiral basis, and xR = x̄L are the antichiral ones. In

a topologically trivial background these two forms are equivalent (up to a total space-time

derivative), due to the Bianchi identity DiαDj
αW = D̄i

α̇D̄
jα̇W̄ .

Unlike the G-analytic potential V ++, the field strength W (xL, θ) is a chiral superfield

which does not depend on the harmonic variable u±. It can be expressed as a power series

in V ++, involving multiple harmonic integrals [61, 62]

W =
i

4
u+i u

+
j D̄

i
α̇D̄

jα̇
∞∑

r=1

∫
du1 . . . dur

(−ig)rV ++(u1) . . . V
++(ur)

(u+u+1 )(u
+
1 u

+
2 ) . . . (u

+
r u+)

, (A.16)

where (u+u+1 ) ≡ u+iǫiju
+j
1 , etc. In terms of component fields we have (in the Abelian case)

W = ϕ(x) + θαiλαi(x) + θαiθβj(ǫij(σ
µν)αβFµν(x) + ǫαβYij) + i(θ3)αi ∂αα̇λ̄

α̇i(x) + θ4�ϕ̄(x) .

(A.17)

With the hypermultiplet matter in the adjoint representation of the gauge group, the

two actions (A.12) and (A.14) describe the N = 4 SYM theory,

SN=4 SYM = SN=2 SYM + SHM/SYM . (A.18)
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As mentioned earlier, the main advantage of the N = 2 harmonic superspace

formulation is the possibility to quantize the theory in a straightforward and manifestly

N = 2 supersymmetric way [58, 59]. Further, compared to the N = 1 chiral matter

superfields, the N = 2 hypermultiplet composite operators O = Tr(q+)k, etc., need

no covariantization, hence no presence of the gauge superfield in the definition of the

correlation functions 〈O . . . Õ〉. The hypermultiplet matter interacts with the gauge sector

only through a single trilinear vertex, which considerably simplifies the Feynman diagrams.

The true non-Abelian nature of the theory is encoded in the gauge self-interactions (as

well as in the ghost sector, but we do not need it here).

A.2 Feynman rules

In this section we give a subset of the Feynman rules for the combinedN = 2 matter+gauge

system which are sufficient for the one- and two-loop calculations we do in this paper (the

complete set can be found in [49, 58, 59]).

The hypermultiplet propagator is the solution to the Green’s function equation

D++
1 〈q̃+(1)q+(2)〉 = δ4(xA1 − xA2)δ

2(θ+1 − θ+2 )δ
2(θ̄+1 − θ̄+2 )δ(u1, u2) , (A.19)

and is given by

〈q̃+a (1)q+b (2)〉 =
(12)

4π2x̂212
δab =

1,a 2,b
. (A.20)

Here a, b are color indices and

(12) = −(21) = u+i
1 ǫiju

+j
2 (A.21)

is a shorthand for the SU(2) invariant but U(1) covariant contraction of the two harmonics.

The coordinate difference

x̂µ12 = xµA1 − xµA2 +
2i

(12)
[(1−2)θ+1 σ

µθ̄+1 + (2−1)θ+2 σ
µθ̄+2 + θ+1 σ

µθ̄+2 + θ+2 σ
µθ̄+1 ] , (A.22)

where, e.g., (1−2) = u−i
1 ǫiju

+j
2 , is invariant under the Poincaré supersymmetry transfor-

mations in the G-analytic basis (A.5):11

δQx
αα̇
A = −4iu−i (ǫ

iαθ̄+α̇ + θ+αǭiα̇) , δQθ
+α,α̇ = u+i ǫ

iα,α̇ , δQu
±
i = 0 . (A.23)

Setting the Grassmann variables in (A.20) to zero, we find the propagator for the

physical scalars φia(x) projected with harmonics (recall (A.8)):

〈q̃+a (1)q+b (2)〉θ=0 = 〈u+i
1 φ̄ia(x1)|u+2jφ

j
b(x2)〉 =

(12)

4π2x212
δab . (A.24)

The gauge field (gluon) propagator depends on the gauge we have chosen. In

our loop calculations we will only need the propagator 〈W (1)V ++(2)〉, having one chi-

ral end (the field strength W (xL1, θ1)) and one G-analytic end (the SYM potential

11To check this one makes use of the harmonic cyclic identity (1−2)1 + (21)1− + (11−)2 = 0 and of the

defining property (11−) = 1 (see (A.2)).
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V ++(xA2, θ
+
2 , θ̄

+
2 , u2)). It is independent of the gauge and has the following form

〈Wa(1)V
++
b (2)〉 = − gδab

2π2x̃212
(θ12)

2 =

1,a 2,b

(A.25)

It involves the coordinate differences

x̃αα̇12 = xαα̇L1 − xαα̇A2 − 4iu−2iθ
iα
1 θ̄+α̇

2 , θα12 = u+2iθ
iα
1 − θ+α

2 (A.26)

and is invariant under the Poincaré supersymmetry transformations in the chiral basis for

xL1,

δQx
αα̇
L = −4iθαiǭα̇i , δQθ

iα = ǫiα , (A.27)

and (A.23) in the G-analytic basis for xA2.

Finally, the only interaction vertex we shall need here is the gluon-to-matter coupling

which can be read off from the covariantized hypermultiplet action (A.12):

0

q+cq̃+a

V ++
b

= igfbac

∫
d4x0du0d

4θ+0 (A.28)

The SYM action (A.14), (A.16) is non-polynomial in V ++, so it contains infinitely many

vertices (but, of course, becomes polynomial in the Wess-Zumino gauge (A.13)). At the

one- and two-loop levels that we are studying in this paper only the cubic non-Abelian

vertex can appear, but later on we shall see that all such graphs are irrelevant.

A.3 The insertion procedure: four points

Here we illustrate the N = 2 Lagrangian insertion procedure described in section 3, on the

example of the two-loop four-point correlation function G4 (5.1) of hypermultiplet bilinears

O = Oθ+=θ̄+=0 with O = Tr(q+)2 and Õ = Tr(q̃+)2. In particular, following [32, 33]

we explain the important role of N = 2 superconformal symmetry, which allows us to

drastically simplify the two-loop calculations.

The two-loop (order g4) corrections to the four-point correlation function G4 can be

obtained by a double insertion of the N = 2 SYM chiral action

SN=2 SYM =

∫
d4xd4θ L(xL, θ) , L =

1

2g2
Tr(W (xL, θ))

2 . (A.29)

To see this, we first rescale the gauge potential V ++ → g−1V ++, with the effect that the

coupling only appears in front of the SYM action (A.14), but not inside the field strength

W (A.16). It also drops out of the gauge/matter coupling (A.12), thus (A.28) loses the ex-

plicit g. As another consequence, the gauge propagator (i.e. the inverse of the gauge kinetic

term) is scaled up by g2, which introduces a factor of g2 in the right-hand side of (A.25).
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Let us write out the perturbative expansion of G4:

G4 = G
(0)
4 + g2G

(1)
4 + g4G

(2)
4 + . . . , (A.30)

so that

G
(2)
4 =

1

2

(
∂

∂g2

)2

g=0

G4 . (A.31)

On the other hand, by considering the effect of the differentiation on the path integral we

find

1

2
g4
(

∂

∂g2

)2

G4 = i

∫
d4x0d

4θ0 〈L(0)O(1)Õ(2)O(3)Õ(4)〉 (A.32)

−1

2

∫
d4x0d

4θ0 d4x0′d
4θ0′ 〈L(0)L(0′)O(1)Õ(2)O(3)Õ(4)〉 .

The left-hand side in the last formula starts at O(g4), which leads to a puzzle: The pertur-

bative expansion of the first term on the right-hand side starts at O(g2), while the second

term seemingly starts at O(g4). The only way to produce a compensating O(g2) contribu-

tion from there is to insert both L(0), L(0′) into one gluon line. This means inserting the

chiral-to-chiral propagator (it contains just the propagator of the auxiliary field Y in (A.17))

〈W (0)W (0′)〉 = 2ig2δ4(xL0 − xL0′)δ
4(θ0 − θ0′) (A.33)

into that gluon line. Upon performing the chiral superspace integration over point 0′, the

O(g2) contribution from the single insertion term is identically canceled. This remains

true in general: 00′ contact terms from the double insertion term identically cancel the

single insertion term. Returning to O(g4):

G
(2)
4 = − 1

2g4

∫
d4x0d

4θ0 d4x0′d
4θ0′ 〈L(0)L(0′)O(1)Õ(2)O(3)Õ(4)〉reg

g4
(A.34)

where the superscript indicates that the 00′ contact terms are to be omitted. For the class

of graphs we find below this simply means not to contract W (0) and W (0′). We stress

that this (4 + 2)−point correlation function is once again at Born level; it comes with

g4 because there are four Yang-Mills propagators and two explicit factors g−2 from the

Lagrangian insertions. Below we show that this correlation function with insertions has

to be nilpotent, i.e. proportional to θ8.

A.3.1 Structure of the nilpotent superconformal covariant

The most important feature of the new six-point correlation function is its superconformal

symmetry. Indeed, it involves gauge-invariant composite operators, O, Õ and L. As ex-

plained in section 3, all of these operators are particular projections of the N = 4 half-BPS

protected operator in the 20′ of SU(4). As such, they need no renormalization and have

well-defined superconformal properties. As long as we keep the end points in this correla-

tion function apart, nothing can break the N = 2 superconformal symmetry of the theory.

This imposes rather strong constraints on the general form of the correlation function.
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The N = 2 superconformal algebra has an SU(2)×U(1) automorphism group (R sym-

metry). The U(1) factor (to be distinguished form the harmonic U(1) ⊂ SU(2)) acts only

on the odd superspace variables, R[θ] = 1/2, R[θ̄] = −1/2. From the SYM action (A.29)

we deduce R[L] = 2 and R[W ] = 1. At the same time, the hypermultiplets q+ and q̃+ have

no R charge, as follows from the action (A.9), but they carry harmonic charge 1. This

implies that the six-point correlation function carries harmonic U(1) charges 2 at points 1

to 4, and a total R charge 4 at points 0 and 0′. Since the chiral θα (at both the insertion

and external points) are the only superspace coordinates with positive R charge 1/2, we

conclude that the correlation function can be written in the factorized form

〈LLOÕOÕ〉 = Θ(x, θ, u)× f(x, u) + θ̄-terms , (A.35)

where Θ is a particular nilpotent six-point superconformal covariant, homogeneous in θ

of degree 8, and thus carrying the whole R charge. The antichiral odd variables θ̄ can

only come from the external points, but we are ultimately interested only in the lowest

components O = Oθ+=θ̄+=0, so we can ignore the θ̄ terms in (A.35). So, the essential

information about the six-point correlation function (A.35) is contained in the function

f(x, u) without R charge. Below we will show that this function is in fact harmonic

independent, the harmonic U(1) charge being carried by Θ.

The structure of the nilpotent covariant Θ is determined by superconformal symmetry

combined with the G-analytic nature of the four external points and the chiral nature

of the two insertion points. In addition to Poincaré supersymmetry (parameters ǫiα, ǭ
α̇
i )

we need to consider special conformal supersymmetry (parameters ηiα, η̄
α̇
i ). In the chiral

basis (A.15) we have

δxαα̇L = −4iθiαǭα̇i − 4iθiαxβα̇L ηβi , δθiα = ǫiα + xαβ̇L η̄i
β̇
+O(θ2) , (A.36)

while in the G-analytic basis (A.5) we find

δxαα̇A = −4iu−i (ǫ
iαθ̄+α̇ + θ+αǭiα̇) + 4i(xαβ̇A θ̄+α̇η̄i

β̇
− xβα̇A θ+αηiβ)u

−
i ,

δθ+α = u+i ǫ
iα + xαβ̇A η̄i

β̇
u+i +O(θ2) , δθ̄+α̇ = u+i ǭ

iα̇ − xβα̇A ηiβu
+
i +O(θ̄2) ,

δu+i = 4i(θ+αηjα + η̄jα̇θ̄
+α̇)u+j u

−
i , δu−i = 0 . (A.37)

Now, the covariant Θ is homogeneous in θ of degree 8. The inhomogeneous part of δθ,

δθiα = ǫiα + xαβ̇L η̄i
β̇
, δθ+α = u+i ǫ

iα + xαβ̇A η̄i
β̇
u+i , (A.38)

would lower this degree, unless we find combinations of θ’s which are invariant (to lowest

order in θ, θ̄) under N = 2 superconformal supersymmetry. Such combinations are

ξrα̇ = ρrα̇ − σrα̇ , r = 1, . . . , 4 (A.39)

with

ρrα̇ = (θ+r − θi0u
+
ri)

α(xr0)αα̇x
−2
r0 , σrα̇ = (θ+r − θi0′u

+
ri)

α(xr0′)αα̇x
−2
r0′ . (A.40)
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Their total number is 8, and we wish to construct the nilpotent covariant Θ of degree 8.

We conclude that the leading term of Θ must involve all of the variables ξr:

Θ = ξ21ξ
2
2ξ

2
3ξ

2
4 . (A.41)

The aim of our two-loop calculation is to determine the factor f(x, u) in the six-point

correlation function (A.35). Since we are only interested in the lowest component of the

four-point correlation function 〈OÕOÕ〉 = 〈OÕOÕ〉θ+=θ̄+=0, we can set all the external

θs to zero, θ+r = 0, r = 1, . . . , 4. In this case Θ is rather simple [32, 33]:

Θ|θ+=0 = θ40θ
4
0′

(x200′)
2R

∏4
r=1 x

2
r0x

2
r0′

, (A.42)

where

R = (12)2(34)2x214x
2
23 + (14)2(23)2x212x

2
34 + (12)(23)(34)(41)

[
x213x

2
24 − x212x

2
34 − x214x

2
23

]
.

(A.43)

Finally, substituting everything into the double-insertion formula (A.32) and perform-

ing the trivial chiral integrations over θ0,0′ , we obtain the two-loop correlation function

〈OÕOÕ〉 = 〈OÕOÕ〉θ+=θ̄+=0 = R
∫

d4x0d
4x0′∏4

r=1 x
2
r0x

2
r0′

(x200′)
2 f(x, u) . (A.44)

Notice the characteristic presence of the polynomial prefactor R. As shown in [52, 63, 64],

this factorization of the loop corrections is a universal feature, called “partial non-

renormalization”.

A.3.2 Feynman graphs. Harmonic analyticity

Now, the practical question is how to compute f(x, u) from the corresponding set of two-

loop Feynman diagrams. It turns out that instead of setting θ+ = 0, as required in the

final expression (A.44), it is much more convenient to do the computations with θ0,0′ = 0.

The knowledge of the complete Θ (A.41) allows us to easily switch from one of these forms

to the other. The new form of Θ is even simpler, yielding

〈LLOÕOÕ〉θ0,0′=θ̄+=0 = (x200′)
4

4∏

r=1

(θ+r )
2

x2r0x
2
r0′

f(x, u) . (A.45)

Then it is clear that in working out the expressions for the various Feynman graphs we

can concentrate only on the terms with the maximal number of external θ+. In particular,

at order g4 this choice removes all graphs which contain non-Abelian interaction vertices.

For example, the non-Abelian gluon subgraph in figure 6(c) vanishes because it has two

chiral ends at the insertion points 0 and 0′ and one G-analytic end (the gluon without

insertion); after setting θ0,0′ = 0 we are left with too few chiral θ+s at the G-analytic

gluon end to supply the required R charge 2. Similarly, the block in figure 6(d) has three

chiral ends (in fact, only two, points 0′ and 0′′ should be identified) and two G-analytic
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Figure 6. Building blocks of the Feynman graphs.

ends; once again, the G-analytic θ+s cannot provide the required R charge 3. The same

applies to the block in figure 6(e).

As a result of all these simplifications our task is reduced to listing all tree level

Feynman graphs made out of the two building blocks T and TT in figures 6(a) and (b).

They are calculated with the Feynman rules from section A.2. Although these blocks

contain gauge/matter interaction vertices (A.28) and hence space-time integrals, the latter

are easily done using the identities

�1

∫
d4x3

x213x
2
23x

2
03

=
4iπ2

x212x
2
10

, ∂
[µ
1 ∂

ν]
2

∫
d4x3

x213x
2
23x

2
03

= −4iπ2
x
[µ
10x

ν]
20

x212x
2
10x

2
20

, (A.46)

producing very simple rational space-time functions [32, 33, 60]:

〈q̃+a (1)Wb(0)q
+
c (2)〉 = − 2ig2fabc

(2π)4 x212

[
(21−)ρ21 + (12−)ρ22 − 2(ρ1ρ2)

]
(A.47)

〈q̃+a (1)Wb(0)Wd(0
′)q+e (2)〉 = −4g4fabcfcde

(2π)6 x212
(1−2−)ρ21 σ

2
2 , (A.48)

where ρ and σ were defined in (A.40).

Notice the characteristic presence of negative-charged harmonics in both expres-

sions (A.47) and (A.48). This has to do with the important issue of harmonic analytic-

ity [65]. In an interacting theory the hypermultiplet satisfies its equation of motion (A.6)

with a covariant harmonic derivative, D++q++ ig[V ++, q+] = 0. The gauge-invariant com-

posite operators Ok = Tr(q+)k satisfy the same equation with a flat harmonic derivative,

D++Ok = 0. As explained above, the harmonic derivative is the raising operator of SU(2).

So, Ok corresponds to the highest-weight state of an SU(2) irrep of weight k (a (k+1)-plet).

In practice, this means that the n−point correlation function is annihilated by the

harmonic derivative D++ at each point,

D++
r 〈Ok . . . Ok〉 = 0 , r = 1, . . . , n . (A.49)

Since D++u+ = 0 and D++u− = u+, this implies that the correlation function is a

polynomial in u+r , r = 1, . . . , n, homogeneous of degree k at each point, and no dependence

on u− is allowed.

Clearly, the expressions for the building blocks T (A.47) and TT (A.48) are not

harmonic analytic because of the presence of u−1 and u−2 . This, however, is not a problem:
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Figure 7. Graphs surviving the identification of harmonics.

The various building blocks or even complete Feynman graphs are not expected to be

harmonic analytic, much like they are not conformal and gauge invariants. It is only the

sum of all graphs that has these properties. Indeed, it can be shown that by summing up

all graphs made from the T and TT blocks, all negative-charged harmonics drop out. To

see this one uses the harmonic cyclic identity, e.g.,

(12)(1−2−)− (12−)(1−2) = u+i
1 u−j

1 u+k
2 u−l

2 (ǫikǫjl − ǫilǫjk) = (11−)(22−) = 1 , (A.50)

as a consequence of the defining property u+iu−i = 1 (A.2). In practice, the use of the

cyclic identity is cumbersome when there are u’s from too many different points. But we

can do better, by completely sidestepping this issue.

We can profit from the expected harmonic analyticity of the final result to greatly

simplify our graph calculations. Let us come back to the correlation function of four

operators O ≡ O2 with two Lagrangian insertions, calculated at θ0 = θ0′ = 0, see (A.45).

The Lagrangian has no harmonic U(1) charge, hence 〈LLOÕOÕ〉 should have charges

+2 at each external point. From (A.45) we see that the nilpotent factor already carries

the necessary charges, thus making the function f(x, u) chargeless. Harmonic analyticity

then implies that this function is harmonic independent. This allows us to compute the

correlation function (A.45) with all four harmonic variables identified,

u±1 = u±2 = u±3 = u±4 . (A.51)

This simple trick eliminates a number of irrelevant Feynman graphs, namely, all graphs

with at least one free hypermultiplet line, since the hypermultiplet propagator (A.24)

vanishes if u+1 = u+2 . Among them we find the graphs with the blocks from figure 6(c)-(e),

for which we already gave a different reason why they do not contribute. In addition, the

identification of harmonics eliminates the graphs with TT blocks. This leaves only the

three graphs shown in figure 7 (plus point permutations):

Notice that despite the appearance, the third graph is planar. This has to do with the

fact that unlike the Green’s functions of elementary fields, which are planar on a disk,

the correlation functions (Green’s functions) of composite operators have the topology of

a sphere. This peculiar property of the correlation functions was mentioned in section 6.2.

Each of the graphs in figure 7 is a product of T blocks (A.47) evaluated at θ0 = θ0′ = 0.

Thus, the calculation of the harmonic-independent function f(x) in (A.45) is reduced to
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elementary algebra. Then f(x) is substituted in (A.44), leading to the final result (5.2)

from [32, 33].

This procedure is a very efficient tool for calculating not only four-point, but also

n-point correlation functions of half-BPS operators made of hypermultiplets. In the next

subsection we show how to adapt the procedure to five points.

A.4 The insertion procedure: five points

Here we evaluate the correlation function

G5+2 = 〈L(0) L(0′) O(1) Õ(2) O(3) Õ(4) Ô(5)〉 , (A.52)

with O = Tr(q+)2, Õ = Tr(q̃+)2, Ô = 2Tr(q̃+q+), L = 1/(2g2) Tr(W )2, in order to study

the two-loop corrections to the correlation function

G5 = 〈O(1) Õ(2) O(3) Õ(4) Ô(5)〉 , (A.53)

discussed in section 6. We will use the technology developed in [32, 33] and reviewed in

appendix A.3 for the four-point case G4 = 〈O(1) Õ(2) O(3) Õ(4)〉.
As before, we compute G5+2 in D = 4. It remains finite in the light-cone limit

x212 = x223 = x234 = x245 = x251 → 0 . (A.54)

The divergences of G5 in this limit arise from the integration over the insertion points

x0, x0′ which we will eventually regularize by the IR prescription of changing only the

dimension of the integration measure at these points.

Repeating the superconformal argument of appendix A.3.1, we can claim that the

leading term in the θ expansion of the correlation function G5+2 will factorize into a

nilpotent covariant Θ ∼ θ8 and some function f(x, u) of the bosonic variables, see (A.35).

Once again, Θ will depend only on the invariant variables ξr (A.39) (with r = 1, . . . , 5).

This time, however, we have 10 such variables, while the degree of homogeneity of Θ is

still 8. Unlike the four-point case, where the nilpotent structure (A.41) was unique, now

we can have two different choices:

A5 = ξ21 ξ
2
2 ξ

2
3 ξ

2
4 f5(x, u)

B45 = ξ21 ξ
2
2 ξ

2
3 ξ4α̇ ξ5β̇ f

α̇β̇
45 (x, u) , (A.55)

and their point permutations. A graph calculation is needed to fix the coefficient functions

f(x, u). The knowledge that only Ar, Brs can occur is very useful, though, if combined

with the property of harmonic analyticity, namely the fact that the full gauge invariant

correlation function only depends on u+r and that it does so in a polynomial fashion (see

appendix A.3.2).

Let us consider the covariants Ar, Brs at θ0 = θ0′ = 0, in other words, only the terms in-

volving θ+r from the outer points. Now, θ+r carries U(1) charge 1 at point r, and so does u+r .

Hence the spinor part of the covariant A5 has charge 2 at points 1,2,3,4, whereas it is charge-

less at point 5. Since all five outer operators O, Õ, Ô carry charge 2, the coefficient function
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f5(x, u) has to have charge 2 at point 5 and zero at all other points. To be harmonic analytic

it must be an SU(2) invariant polynomial in the u+r with the correct charges. The only such

invariant is trivially zero, (55) = ǫiju+5ju
+
5i = 0. This argument rules out all Ar covariants.

Further, in B45 the odd variables ξ carry charge 2 at points 1,2,3 and charge 1 at

points 4,5. Due to harmonic analyticity, the harmonic dependence of the bosonic factor

can only be of the form f α̇β̇45 (x, u) = (45)f α̇β̇45 (x). Thus, the sum of the contributions of the

graphs to this covariant will be

B45 = ξ21 ξ
2
2 ξ

2
3 ξ4α̇ ξ5β̇ (45) f

α̇β̇
45 (x) . (A.56)

Individual graphs do contain non-analytic terms, but we need not go through all the

details of how they cancel out. Instead, we can apply the powerful trick of identifying the

harmonic variables, as we did in the four-point case in appendix A.3.2.

For each covariant Brs (with r, s = 1, . . . , 5) we know that the harmonic dependence

of the coefficient function will eventually be given by just (rs). This result clearly does

not change if all harmonics, except for u±r , are put equal to u±s . As a convention, if r < s

we will keep u±ri aside and identify all other harmonics with u±si. We will obtain the correct

result if this is done consistently for any contribution to the spinor structure pertaining

to the given covariant (A.56).

This manoeuvre drastically simplifies the use of the harmonic cyclic identity. For

example equation (A.50) reduces to 0 − (−1) = 1 if both u±1i, u
±
2i are sent to u±5i. But

there are more far-reaching consequences for the supergraphs at θ0 = θ0′ = 0.

• Any diagram with more than one free line (i.e. a hypermultiplet propagator between

two outer points) is put to zero. Spinor structures relating to the Ar covariants may

be discarded immediately. For the Brs type contributions the suggested identification

of the harmonics will send at least one of the numerators of the free lines to (ss) = 0.

• As a consequence, we only need to take into account graphs built out of four T blocks

and one free hypermultiplet line.

• The light-cone limit singles out diagrams in which the gluon lines connect to the

pentagon frame 123451 of matter lines, because the T blocks with outer ends r, s

have an explicit propagator factor 1/x2rs. This eliminates graphs with disconnected

matter frames, like the third graph in figure 7, since they lack the required light-cone

singularity. For the same reason, graphs with a connected “zigzag” frame like in

figure 1(b) are not allowed.

All of these simplifications leave us with a very small number of graphs shown in

figure 8 (notice that the middle graph is planar, like the two others).

The resulting algorithm for evaluating these graphs is as follows:

• For any of the diagrams in this set multiply out the terms of the four T blocks and

classify them according to the various θ+r structures. Discard terms with four (θ+r )
2

(A type) but keep those related to the B type covariants. Sum over all graphs.
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Figure 8. Graphs contributing to G5+2. The permutations of the insertion points 0, 0′ and the

cyclic permutations of the external points should be added.

• In each term identify the harmonics according to the spinor structure; by way of

example for (θ+1 )
2(θ+2 )

2(θ+3 )
2θ+4αθ

+
5β we put u±1i = u±2i = u±3i = u±5i. The contributions

of some diagrams may vanish in doing so, in other cases the harmonics will reduce

to the simple factor (45).

• Reconstruct the full covariants. The result of the procedure is the entire leading

term of the correlation function G5+2 in which the harmonics are not identified

any longer. We can now switch to the “opposite end” of the expression by putting

all θ+r = 0, while restoring the spinors from the insertion points. We observe that

this step produces (12)(23)(34)(45)(51) θ40 θ
4
0′ g0, i.e. in the light-cone limit no other

SU(2) channel is present.

The reconstruction is in fact elementary. From the definitions (A.39), (A.40) we find

θ+α
r =

x2r0 x
2
r0′

x200′

(
xαα̇r0
x2r0

− xαα̇r0′

x2r0′

)
ξrα̇|θ0=θ0′=0 . (A.57)

By this formula we can unambiguously upgrade every θ+r from the graph calculation to the

invariant combination ξr. Next we note that

x2r0 x
2
r0′

x200′

(
xαα̇r0
x2r0

− xαα̇r0′

x2r0′

)
ξrα̇|θ+r =0 = xαα̇r0 λ

r+
0′α̇ − xαα̇r0′ λ

r+
0α̇ (A.58)

where

λr+tα̇ =
x00′ α̇α
x200′

θαit u
+
ri , t ∈ {0, 0′} . (A.59)

In order to complete the task we must collect the u-projected λ variables into θ40 θ
4
0′ and a

harmonic factor. To this end we use the identity

λ1+
0α̇

λ2+
0β̇

λ3+
0γ̇

λ4+
0δ̇

=
1

(12)2
λ1+
0α̇

λ2+
0β̇

(
(13)λ2+

0γ̇
−(23)λ1+

0γ̇

)(
(14)λ2+

0δ̇
−(24)λ1+

0δ̇

)
(A.60)

=
1

4 (x200′)
2

(
ǫα̇γ̇ ǫβ̇δ̇ (14)(23)− ǫα̇δ̇ ǫβ̇γ̇ (13)(24)

)
θ40 ,

and its special cases where some points coincide. Beyond the factor (rs) in the coefficient

function of the Brs covariants, the conversion to θ40 θ
4
0′ produces four further harmonic
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factors (ij) which now carry the remaining U(1) charges. The harmonic dependence

remains manifestly analytic. Out of the u+r from the five outer points one can construct

six independent polynomials carrying charge 2 at every point. We stress that it is not

obvious that the sum of graphs produces only one channel in the light-cone limit, namely

(12)(23)(34)(45)(51).

In summary, we have explained how the evaluation of the correlation function

Gn+2 is reduced to algebraic manipulations by the insertion procedure combined with

superconformal symmetry and harmonic analyticity. As in the four-point case, no integral

needs to be done once the T block is known. Nevertheless, the amount of algebra is

fairly large, so that we have resorted to a Mathematica script. It remains to restore the

integrations over the insertion points x0, x0′ with the IR-modified measure. The scalar

(parity-even) part of the result for G5 has the concise form displayed in eq. (6.7).

A special comment is due here on the pseudo-scalar (parity-odd) part of the correlation

function. Our calculation of G5+2 does indeed produce such a (rather complicated) part.

But this does not mean that G5 will have a parity-odd part. It must drop out after the

integration over the insertion points x0, x0′ . The explanation is given in appendix A.5.

A.5 Parity properties of the scalars in the N = 2 theory

Here, following ref. [66], we argue that there exists a parity assignment for the fields of the

N = 2 vector and hypermultiplets, such that the hypermultiplet scalars are true scalars

(not pseudo). With this assignment, all our operators made of hypermultiplets are scalars,

and their correlation functions should not contain a parity-odd part.

The components of the two multiplets are contained in the G-analytic superfields q+,

eq. (A.8), and V ++, eq. (A.13). The parity assignments of ref. [66] for the superspace

coordinates are

P : x′0 = x0 , ~x′ = −~x , (θ+α )
′ = θ̄+α̇ , (θ̄+α̇ )

′ = −θ+α , (u±i )
′ = u±i , (A.61)

while the superfields remain inert,

q+
′
(x′, θ′, u′) = q+(x, θ, u) , V ++′

(x′, θ′, u′) = V ++(x, θ, u) . (A.62)

In terms of the bosonic physical fields, these assignments imply that the hypermultiplet

scalars φi are true scalars, the gluon Aµ is a polar vector, while the complex vector mul-

tiplet scalar ϕ is a mixture of a true and a pseudo-scalar. In addition, the fermion fields

transform in an unusual way: the hyperinos transform into each other (up to signs), ψ ↔ κ̄,

and the gluinos λi ↔ λ̄i. The latter relation means that, e.g., λ1 ↔ λ̄1 = λ̄2 = (λ2)∗,

which again differs from the traditional assignment λi ↔ (λi)∗.

These rules can be tested for consistency by inspecting the Yukawa couplings in the

N = 4 Lagrangian. The gauge/matter coupling reads

∫
dud4xd4θ+ Tr(V ++[q̃+, q+]) ⇒ Tr[φi({κ, λi}+ {ψ̄, λ̄i})] + c.c. (A.63)
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We see that the above assignments allow φi to stay inert under parity. At the same time,

the Yukawa coupling from the gauge sector is
∫
d4xd4θ Tr(W 2) ⇒

∫
d4xTr

(
ϕ̄{λi, λi}+ ϕ{λ̄i, λ̄i}

)
. (A.64)

Here the combination of fermions accompanying each boson is chiral, therefore ϕ↔ ϕ̄.

The above parity assignments mean that the hypermultiplet composite operators of

the type O = Tr(q+)k|θ=0 = Tr(φi1(x) . . . φik(x))u+i1 . . . u
+
ik

are all true scalars. Thus, the

correlation functions 〈OÕOÕ〉 that we are considering cannot have a parity-odd part.

The reason why we see such a part in the correlation functions Gn+1 and Gn+2 was ex-

plained after eq. (4.9). It is due to the insertion of the complex (chiral) form of the SYM La-

grangian. In it we find pseudo-scalar terms, for example iF F̃ , which are responsible for the

parity-odd part in the correlation functions with insertions. But at the final stage of the cal-

culation, the integration over the insertion point will eliminate all such terms, which are to-

tal derivatives. Indeed, we have already encountered this phenomenon in section 4. The cor-

relation function with one insertion Gn+1 has the form (4.9), where we clearly see a pseudo-

scalar in the last line. However, it drops out after the integration over the insertion point.

B Four-point correlation functions of operators of weight k

Let us consider the four-point correlation function of protected half-BPS operators of weight

k. At the lowest level of the θ expansion they are built from k elementary scalar fields,

Tr(φk). Such correlation functions are discussed in detail in [63, 64], using the method

of [32, 33]. We consider the following N = 2 hypermultiplet projection

G4;k = 〈Ok(1)Õk(2)Ok(3)Õk(4)〉 (B.1)

where in this appendix Ok = 2k/2Tr(q+)k.

The (connected, planar) tree-level correlation function is given by (see figure 9)

G
(0)
4;k = k4N2k−2

c

k−1∑

m=1

XmY k−m , (B.2)

where the notation was introduced for the harmonic and space-time propagator factors

X =
(12)(34)

(2π)4x212x
2
34

, Y =
(14)(32)

(2π)4x214x
2
23

. (B.3)

The loop corrections have the general factorized form

G
(loops)
4;k = R′

k−2∑

m=0

Fk
m(x)XmY k−m−2 (B.4)

with the polynomial prefactor

R′ = sX2 + (t− s− 1)XY + Y 2 (B.5)
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m

k−m

1 2

34

Figure 9. Tree graphs for operators of weight k.

involving the conformal cross-ratios

s =
x212x

2
34

x214x
2
23

, t =
x213x

2
24

x214x
2
23

. (B.6)

The coefficient functions F(x) will be specified below.

The result of [63] for the one-loop correction in the planar limit is

G
(1)
4;k = k4N2k−2

c R′ 2a x214x
2
23 g(1234)

k−1∑

m=1

Xm−1Y k−m−1 , (B.7)

where the one-loop box integral g(1234) is defined in (5.7). We see that in this case the

general amplitude (B.4) becomes completely degenerate, with all Fk
m(x) ∝ x214x

2
23 g(1234).

Going to the light-cone limit x212 = x223 = x234 = x241 → 0, we find that s remains finite

while t→ ∞, hence

R′ → tXY . (B.8)

As a consequence, eq. (B.7) simplifies to

G
(1)
4;k = k4N2k−2

c 2a x213x
2
24 g(1234)

k−1∑

m=1

XmY k−m + subleading terms . (B.9)

Dividing this expression by the tree-level correlation function (B.2), we obtain the same

ratio as in the case k = 2 at one loop, see (5.16). Thus, the ratio does not depend on the

value of k, up to one loop.

The same pattern is found at two loops. According to [64], the two-loop coefficient

functions in (B.4) are

Fk
m =

g4

(8π2)2
{ [
Cd
mx

2
13x

2
24 + (2sCb

m − Cd
m)x214x

2
23 +

(
2Cb

m/s− Cd
m

)
x212x

2
34

]
[g(1234)]2

+ (Cc
m − Cd

m)2[x213h(123; 134) + x224h(124; 234)]
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+ (Cd
m − Ca1

m )2[x214h(124; 134) + x223h(123; 234)]

+ (Cd
m − Ca2

m )2[x212h(123; 124) + x234h(134; 234)]
}
, (B.10)

with the two-loop integral h defined in (5.7) and with color factors C given in [64]. Going

to the light-cone limit, only the first term from the first line and the term from the second

line survive. Further, in the planar limit the remaining color factors simplify to (see [64])

Cd
m = k4N2k

c , Cc
m = 2k4N2k

c . (B.11)

As a result, we find that on the light cone all the relevant two-loop coefficients become equal,

Fk
m(x) = a2 k4N2k−2

c

{
(x213x

2
24)

2[g(1234)]2 + 2x213x
2
24[x

2
13h(123; 134) + x224h(124; 234)]

}
.

(B.12)

Substituting this result into (B.4) and taking account of (B.8), we obtain the two-loop

correction

G
(2)
4;k =

{
(x213x

2
24)

2[g(1234)]2 + 2x213x
2
24[x

2
13h(123; 134) + x224h(124; 234)]

}

× a2 k4N2k−2
c

k−1∑

m=1

XmY k−m + subleading terms . (B.13)

Finally, dividing by the tree-level correlation function (B.2), we obtain the same ratio as

in the case k = 2 at two loops, see (5.16). This confirms that the ratio does not depend

on the value of k up to two loops.

In conclusion, we can claim that the duality relation

lim
x2
i,i+1→0

G4;k/G
(0)
4;k =

(
A4;k/A(0)

4;k

)2
+O(a3) (B.14)

holds for any weight k of the half-BPS operators.

B.0.1 Relation to Wilson loops

From our analysis it follows that the correlation function in the planar limit has the fol-

lowing universal form on the light-cone

〈qk1(1)q̃k2(2)qk3(3)q̃k4(4)〉 = 〈qk1(1)q̃k2(2)qk3(3)q̃k4(4)〉(0) [W (x1, x2, x3, x4)]
2 , (B.15)

where W (xi) is a light-like Wilson loop in the fundamental representation of SU(Nc) eval-

uated along the contour [x1, x2] ∪ [x2, x3] ∪ [x3, x4] ∪ [x4, x1],

W (xi) =
1

Nc
〈0|TrP exp

(
ig

∮

�

dx ·A(x)
)
|0〉 . (B.16)

The diagrammatic derivation of the above relation is shown in figure 10. As explained

in the parallel paper [39], each propagator connecting a pair of adjacent points xi and

xi+1 is approximated by a free propagator multiplied by a Wilson line along the segment

[xi, xi+1], evaluated in the adjoint representation, Wadj[xi, xi+1]. Then, the vertex at point
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N
∑

ki
c

Figure 10. In the planar limit each propagator is replaced by a pair of arrowed lines and the vertex

is replaced as shown in figure 11. Each line with an arrow corresponds to a Wilson line.

Figure 11. Each vertex qk in the planar limit is replaced by k pairs of arrowed lines.

xi contains ki Wilson lines with their color indices contracted to ensure that the total color

charge is zero. The Wilson lines in the adjoint and in the fundamental representations are

related to each other as

(Wadj[xi, xi+1])abt
b =Wfund[xi, xi+1]t

aWfund[xi+1, xi] , (B.17)

or equivalently (for the gauge group U(N))

(Wfund[xi, xi+1])ij(Wfund[xi+1, xi])kl = (ta)kj(Wadj[xi, xi+1])ab(t
b)il . (B.18)

In the multi-color limit, we can use the last identity to replace a Wilson line in the

adjoint representation by a pair of two parallel fundamental Wilson lines with opposite

orientations. This is shown in the middle panel of figure 10. In this way, we obtain a

collection of closed cycles. We observe that all cycles but two have a backtrack shape, i.e.

the corresponding contour encircles a zero area. We denote such a contour by C ∪ C−1.

Only two cycles go through all cusp points xi with different orientations. Notice that the

Wilson lines satisfy the unitarity condition

WC(WC)
† =WCWC−1 = 1 . (B.19)

As a consequence, each backtrack cycle reduces to 1 and we arrive at the right-hand side

panel in figure 10. It contains only two cycles, each corresponding to a Wilson loop in the

fundamental representation.
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