3,805 research outputs found

    Twist-four Corrections to Parity-Violating Electron-Deuteron Scattering

    Full text link
    Parity violating electron-deuteron scattering can potentially provide a clean access to electroweak couplings that are sensitive to physics beyond the Standard Model. However hadronic effects can contaminate their extraction from high-precision measurements. Power-suppressed contributions are one of the main sources of uncertainties along with charge-symmetry violating effects in leading-twist parton densities. In this work we calculate the twist-four correlation functions contributing to the left-right polarization asymmetry making use of nucleon multiparton light-cone wave functions.Comment: 12 pages, 3 figure

    Motion and gravitational radiation of a binary system consisting of an oscillating and rotating coplanar dusty disk and a point-like object

    Full text link
    A binary system composed of an oscillating and rotating coplanar dusty disk and a point mass is considered. The conservative dynamics is treated on the Newtonian level. The effects of gravitational radiation reaction and wave emission are studied to leading quadrupole order. The related waveforms are given. The dynamical evolution of the system is determined semi-analytically exploiting the Hamiltonian equations of motion which comprise the effects both of the Newtonian tidal interaction and the radiation reaction on the motion of the binary system in elliptic orbits. Tidal resonance effects between orbital and oscillatory motions are considered in the presence of radiation damping.Comment: 26 pages, 8 figure

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    Instanton Contribution to the Quark Form Factor

    Full text link
    The nonperturbative effects in the quark form factor are considered in the Wilson loop formalism. The properties of the Wilson loops with cusp singularities are studied taking into account the perturbative and nonperturbative contributions, where the latter are considered within the framework of the instanton liquid model. For the integration path corresponding to this form factor -- the angle with infinite sides -- the explicit expression for the vacuum expectation value of the Wilson operator is found to leading order. The calculations are performed in the weak-field limit for the instanton vacuum contribution and compared with the one- and two-loop order results for the perturbative part. It is shown that the instantons produce the powerlike corrections to the perturbative result, which are comparable in magnitude with the perturbative part at the scale of order of the inverse average instanton size. It is demonstrated that the instanton contributions to the quark form factor are exponentiated to high orders in the small instanton density parameter.Comment: Version coincident with the journal publication. LaTeX, 15 pages, 1 figur

    Instanton Corrections to Quark Form Factor at Large Momentum Transfer

    Get PDF
    Within the Wilson integral formalism, we discuss the structure of nonperturbative corrections to the quark form factor at large momentum transfer analyzing the infrared renormalon and instanton effects. We show that the nonperturbative effects determine the initial value for the perturbative evolution of the quark form factor and attribute their general structure to the renormalon ambiguities of the perturbative series. It is demonstrated that the instanton contributions result in the finite renormalization of the next-to-leading perturbative result and numerically are characterized by a small factor reflecting the diluteness of the QCD vacuum within the instanton liquid model.Comment: Version coincident with the journal publication, 9 pages; REVTe

    Bremsstrahlung of a Quark Propagating through a Nucleus

    Get PDF
    The density of gluons produced in the central rapidity region of a heavy ion collision is poorly known. We investigate the influence of the effects of quantum coherence on the transverse momentum distribution of photons and gluons radiated by a quark propagating through nuclear matter. We describe the case that the radiation time substantially exceeds the nuclear radius (the relevant case for RHIC and LHC energies), which is different from what is known as Landau-Pomeranchuk-Migdal effect corresponding to an infinite medium. We find suppression of the radiation spectrum at small transverse photon/gluon momentum k_T, but enhancement for k_T>1GeV. Any nuclear effects vanish for k_T > 10GeV. Our results allow also to calculate the k_T dependent nuclear effects in prompt photon, light and heavy (Drell-Yan) dilepton and hadron production.Comment: Appendix A is extended compared to the version to be published in Phys.Rev.

    Delta degrees of freedom in antisymmetrized molecular dynamics and (p,p') reactions in the delta region

    Get PDF
    Delta degrees of freedom are introduced into antisymmetrized molecular dynamics (AMD). This is done by increasing the number of basic states in the AMD wave function, introducing a Skyrme-type delta-nucleon potential, and including NNNΔNN\leftrightarrow N\Delta reactions in the collision description. As a test of the delta dynamics, the extended AMD is applied to (p,p') recations at Elab=800E_{\rm lab}=800 MeV for a 12^{12}C target. It is found that the ratio and the absolute values for delta peak and quasielastic peak (QEP) in the 12^{12}C(p,p') reaction are reproduced for angles \Theta_{\rm lab} \agt 40^\circ, pointing to a correct treatment of the delta dynamics in the extended AMD. For forward angles the QEP is overestimated. The results of the AMD calculations are compared to one-step Monte Carlo (OSMC) calculations and a detailed analysis of multi-step and delta potential effects is given. As important side results we present a way to apply a Gallilei invariant theory for (N,N') reactions up to Elab800E_{\rm lab} \approx 800 MeV which ensures approximate Lorentz invariance and we discuss how to fix the width parameter ν\nu of the single particle momentum distribution for outgoing nucleons in the AMD calculation.Comment: 28 pages, revtex, 12 figures included, figures are also available upon request as postscript files from the authors (e-mail: [email protected]), submitted to Phys. Rev.

    Nonperturbative Effects in Gluon Radiation and Photoproduction of Quark Pairs

    Get PDF
    We introduce a nonperturbative interaction for light-cone fluctuations containing quarks and gluons. The qˉq\bar qq interaction squeezes the transverse size of these fluctuations in the photon and one does not need to simulate this effect via effective quark masses. The strength of this interaction is fixed by data. Data on diffractive dissociation of hadrons and photons show that the nonperturbative interaction of gluons is much stronger. We fix the parameters for the nonperturbative quark-gluon interaction by data for diffractive dissociation to large masses (triple-Pomeron regime). This allows us to predict nuclear shadowing for gluons which turns out to be not as strong as perturbative QCD predicts. We expect a delayed onset of gluon shadowing at x102x \leq 10^{-2} shadowing of quarks. Gluon shadowing turns out to be nearly scale invariant up to virtualities Q24GeV2Q^2\sim 4 GeV^2 due to presence of a semihard scale characterizing the strong nonperturbative interaction of gluons. We use the same concept to improve our description of gluon bremsstrahlung which is related to the distribution function for a quark-gluon fluctuation and the interaction cross section of a qˉqG\bar qqG fluctuation with a nucleon. We expect the nonperturbative interaction to suppress dramatically the gluon radiation at small transverse momenta compared to perturbative calculations.Comment: 58 pages of Latex including 11 figures. Shadowing for soft gluons and Fig. 6 are added as well as a few reference

    Measurement of Exclusive rho+rho- Production in Mid-Virtuality Two-Photon Interactions and Study of the gamma gamma* -> rho rho Process at LEP

    Full text link
    Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2
    corecore