Abstract

Within the Wilson integral formalism, we discuss the structure of nonperturbative corrections to the quark form factor at large momentum transfer analyzing the infrared renormalon and instanton effects. We show that the nonperturbative effects determine the initial value for the perturbative evolution of the quark form factor and attribute their general structure to the renormalon ambiguities of the perturbative series. It is demonstrated that the instanton contributions result in the finite renormalization of the next-to-leading perturbative result and numerically are characterized by a small factor reflecting the diluteness of the QCD vacuum within the instanton liquid model.Comment: Version coincident with the journal publication, 9 pages; REVTe

    Similar works

    Available Versions

    Last time updated on 02/01/2020