506 research outputs found

    Image processing applied to gravity and topography data covering the continental United States

    Get PDF
    The applicability of fairly standard image processing techniques to processing and analyzing large geologic data sets in addressed. Image filtering techniques were used to interpolate between gravity station locations to produce a regularly spaced data array that preserves detail in areas with good coverage, and that produces a continuous tone image rather than a contour map. Standard image processing techniques were used to digitally register and overlay topographic and gravity data, and the data were displayed in ways that emphasize subtle but pervasive structural features. The potential of the methods is illustrated through a discussion of linear structures that appear in the processed data between the midcontinent gravity high and the Appalachians

    Structure of the midcontinent basement. Topography, gravity, seismic, and remote sensing

    Get PDF
    Some 600,000 discrete Bouguer gravity estimates of the continental United States were spatially filtered to produce a continuous tone image. The filtered data were also digitally painted in color coded form onto a shaded relief map. The resultant image is a colored shaded relief map where the hue and saturation of a given image element is controlled by the value of the Bouguer anomaly. Major structural features (e.g., midcontinent gravity high) are readily discernible in these data, as are a number of subtle and previously unrecognized features. A linear gravity low that is approximately 120 to 150 km wide extends from southeastern Nebraska, at a break in the midcontinent gravity high, through the Ozark Plateau, and across the Mississippi embayment. The low is also aligned with the Lewis and Clark lineament (Montana to Washington), forming a linear feature of approximately 2800 km in length. In southeastern Missouri the gravity low has an amplitude of 30 milligals, a value that is too high to be explained by simple valley fill by sedimentary rocks

    Retrieval of Compositional End-Members From Mars Exploration Rover Opportunity Observations in a Soil-Filled Fracture in Marathon Valley, Endeavour Crater Rim

    Get PDF
    The Opportunity rover investigated a gentle swale on the rim of Endeavour crater called Marathon Valley where a series of bright planar outcrops are cut into polygons by fractures. A wheel scuff performed on one of the soilā€filled fracture zones revealed the presence of three endā€members identified on the basis of Pancam multispectral imaging observations covering ~0.4 to 1 Ī¼m: red and dark pebbles, and a bright soil clod. Multiple overlapping Alpha Particle Xā€ray Spectrometer (APXS) measurements were collected on three targets within the scuff zone. The field of view of each APXS measurement contained various proportions of the Pancamā€based endā€members. Application of a log maximum likelihood method for retrieving the composition of the endā€members using the 10 APXS measurements shows that the dark pebble endā€member is compositionally similar to average Mars soil, with slightly elevated S and Fe. In contrast, the red pebble endā€member exhibits enrichments in Al and Si and is depleted in Fe and Mg relative to average Mars soil. The soil clod endā€member is enriched in Mg, S, and Ni. Thermodynamic modeling of the soil clod endā€member composition indicates a dominance of sulfate minerals. We hypothesize that acidic fluids in fractures leached and oxidized the basaltic host rock, forming the red pebbles, and then evaporated to leave behind sulfateā€cemented soil

    Retrieval of Compositional Endmembers from Mars Exploration Rover Opportunity Observations in a Soil-filled Fracture in Marathon Valley, Endeavour Crater Rim

    Get PDF
    The Opportunity rover investigated a gentle swale on the rim of Endeavour crater called Marathon Valley where a series of bright planar outcrops are cut into polygons by fractures. A wheel scuff performed on one of the soil-filled fracture zones revealed the presence of three end-members identified on the basis of Pancam multispectral imaging observations covering ~0.4 to 1 Ī¼m: red and dark pebbles, and a bright soil clod. Multiple overlapping Alpha Particle X-ray Spectrometer (APXS) measurements were collected on three targets within the scuff zone. The field of view of each APXS measurement contained various proportions of the Pancam-based end-members. Application of a log maximum likelihood method for retrieving the composition of the end-members using the 10 APXS measurements shows that the dark pebble end-member is compositionally similar to average Mars soil, with slightly elevated S and Fe. In contrast, the red pebble end-member exhibits enrichments in Al and Si and is depleted in Fe and Mg relative to average Mars soil. The soil clod end-member is enriched in Mg, S, and Ni. Thermodynamic modeling of the soil clod end-member composition indicates a dominance of sulfate minerals. We hypothesize that acidic fluids in fractures leached and oxidized the basaltic host rock, forming the red pebbles, and then evaporated to leave behind sulfate-cemented soil

    Compositional Variations in Sands of the Bagnold Dunes, Gale Crater, Mars, from Visible-Shortwave Infrared Spectroscopy and Comparison to Ground-Truth from the Curiosity Rover

    Get PDF
    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X-ray diffraction-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian-transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances (~20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well-sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones

    Characterization of Synthetic and Natural Manganese Oxides as Martian Analogues

    Get PDF
    Recent discoveries of highly concentrated manganese oxides in Gale Crater and on the rim of Endeavour Crater by the Mars Science Laboratory Curiosity and Mars Exploration Rover Opportunity, respectively, imply more highly oxidizing aqueous conditions than previously recognized. Manganese oxides are a significant environmental indicator about ancient aqueous conditions, provided the phases can be characterized reliably. Manganese oxides are typically fine-grained and poorly crystalline, making the mineral structures difficult to determine, and they generally have very low visible reflectance with few distinctive spectral features in the visible to near infrared, making them a challenge for interpretation from remote sensing data. Therefore, these recent discoveries motivate better characterization using methods available on Mars, particularly visible to near infrared (VNIR) spectroscopy, X-ray diffractometry (XRD), and compositional measurements. Both rovers have complementary instruments in this regard. Opportunity is equipped with its multispectral visible imager, Pancam, and an Alpha Particle X-ray Spectrometer (APXS), and Curiosity has the multispectral Mastcam, ChemCam (laser-induced breakdown spectroscopy and passive spectroscopy), and APXS for in situ characterization, and ChemMin (XRD) for collected samples

    Pervasively Altered Hematite-Rich Deposits Southeast of Home Plate, Gusev Crater, Mars

    Get PDF
    The investigation of Home Plate and its surroundings in the Inner Basin of the Columbia Hills in Gusev Crater has added substantially to the water story on Mars. Textural, morphological, and geochemical evidence from Home Plate point towards an explosive origin, probably a hydrovolcanic explosion [1]. High silica deposits in the immediate vicinity of Home Plate suggest hydrothermal alteration [e.g. 2,3]. Pervasively altered deposits rich in hematite were investigated to the southeast of Home Plate. Of these, the target Halley, the target KingGeorgeIsland on the GrahamLand outcrop, and the targets Montalva and Riquelme on the Troll outcrop were investigated in situ with the Alpha Particle X-ray spectrometer (APXS), the Microscopic Imager (MI), and the Moessbauer (MB) spectrometer (Fig. 1)

    Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Get PDF
    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and wellā€preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.Additional co-authors: D DesMarais, M Schmidt, NA Cabrol, A Haldemann, Kevin W Lewis, AE Wang, D Blaney, B Cohen, A Yen, J Farmer, R Gellert, EA Guinness, KE Herkenhoff, JR Johnson, G Klingelhƶfer, A McEwen, JW Rice Jr, M Rice, P deSouza, J Hurowit

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101Ģ…4) cleavage surface (from natural ā€œIceland Sparā€) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved ā€œmirrorā€ surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 Ī¼m diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (Ā± 1.3) Ɨ 10ā€“4 m sā€“1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites
    • ā€¦
    corecore