257 research outputs found
Spectral approach to linear programming bounds on codes
We give new proofs of asymptotic upper bounds of coding theory obtained
within the frame of Delsarte's linear programming method. The proofs rely on
the analysis of eigenvectors of some finite-dimensional operators related to
orthogonal polynomials. The examples of the method considered in the paper
include binary codes, binary constant-weight codes, spherical codes, and codes
in the projective spaces.Comment: 11 pages, submitte
Wavefront control in space with MEMS deformable mirrors for exoplanet direct imaging
To meet the high contrast requirement of 1×10[superscript −10] to image an Earth-like planet around a sun-like star, space telescopes equipped with coronagraphs require wavefront control systems. Deformable mirrors (DMs) are a key element of a wavefront control system, as they correct for imperfections, thermal distortions, and diffraction that would otherwise corrupt the wavefront and ruin the contrast. The goal of the CubeSat DM technology demonstration mission is to test the ability of a microelectromechanical system (MEMS) DM to perform wavefront control on-orbit on a nanosatellite platform. We consider two approaches for an MEMS DM technology demonstration payload that will fit within the mass, power, and volume constraints of a CubeSat: (1) a Michelson interferometer and (2) a Shack-Hartmann wavefront sensor. We clarify the constraints on the payload based on the resources required for supporting CubeSat subsystems drawn from subsystems that we have developed for a different CubeSat flight project. We discuss results from payload laboratory prototypes and their utility in defining mission requirements
Random subcubes as a toy model for constraint satisfaction problems
We present an exactly solvable random-subcube model inspired by the structure
of hard constraint satisfaction and optimization problems. Our model reproduces
the structure of the solution space of the random k-satisfiability and
k-coloring problems, and undergoes the same phase transitions as these
problems. The comparison becomes quantitative in the large-k limit. Distance
properties, as well the x-satisfiability threshold, are studied. The model is
also generalized to define a continuous energy landscape useful for studying
several aspects of glassy dynamics.Comment: 21 pages, 4 figure
MEMS deformable mirror CubeSat testbed
To meet the high contrast requirement of 1 × 10[superscript −10] to image an Earth-like planet around a Sun-like star, space telescopes equipped with coronagraphs require wavefront control systems. Deformable mirrors are a key element of these systems that correct for optical imperfections, thermal distortions, and diffraction that would otherwise corrupt the wavefront and ruin the contrast. However, high-actuator-count MEMS deformable mirrors have yet to fly in space long enough to characterize their on-orbit performance and reduce risk by developing and operating their supporting systems. The goal of the MEMS Deformable Mirror CubeSat Testbed is to develop a CubeSat-scale demonstration of MEMS deformable mirror and wavefront sensing technology. In this paper, we consider two approaches for a MEMS deformable mirror technology demonstration payload that will fit within the mass, power, and volume constraints of a CubeSat: 1) a Michelson interferometer and 2) a Shack-Hartmann wavefront sensor. We clarify the constraints on the payload based on the resources required for supporting CubeSat subsystems drawn from subsystems that we have developed for a different CubeSat flight project. We discuss results from payload lab prototypes and their utility in defining mission requirements.United States. National Aeronautics and Space Administration (Office of the Chief Technologist NASA Space Technology Research Fellowship)Jeptha and Emily Wade FundMassachusetts Institute of Technology. Undergraduate Research Opportunities Progra
Good Random Matrices over Finite Fields
The random matrix uniformly distributed over the set of all m-by-n matrices
over a finite field plays an important role in many branches of information
theory. In this paper a generalization of this random matrix, called k-good
random matrices, is studied. It is shown that a k-good random m-by-n matrix
with a distribution of minimum support size is uniformly distributed over a
maximum-rank-distance (MRD) code of minimum rank distance min{m,n}-k+1, and
vice versa. Further examples of k-good random matrices are derived from
homogeneous weights on matrix modules. Several applications of k-good random
matrices are given, establishing links with some well-known combinatorial
problems. Finally, the related combinatorial concept of a k-dense set of m-by-n
matrices is studied, identifying such sets as blocking sets with respect to
(m-k)-dimensional flats in a certain m-by-n matrix geometry and determining
their minimum size in special cases.Comment: 25 pages, publishe
Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16, 1996 Binyanei haOoma, Jerusalem Iarael part 3(final part)
Recommended from our members
Oxidative discolouration in whole-head and cut lettuce: biochemical and environmental influences on a complex phenotype and potential breeding strategies to improve shelf-life
Lettuce discolouration is a key post-harvest trait. The major enzyme controlling oxidative discolouration
has long been considered to be polyphenol oxidase (PPO) however, levels of PPO and subsequent development of discolouration symptoms have not always correlated. The predominance of a latent state of the enzyme in plant tissues combined with substrate activation and contemporaneous suicide inactivation
mechanisms are considered as potential explanations for
this phenomenon. Leaf tissue physical properties have
been associated with subsequent discolouration and
these may be influenced by variation in nutrient
availability, especially excess nitrogen and head maturity at harvest. Mild calcium and irrigation stress has
also been associated with a reduction in subsequent
discolouration, although excess irrigation has been
linked to increased discolouration potentially through
leaf physical properties. These environmental factors,
including high temperature and UV light intensities,
often have impacts on levels of phenolic compounds
linking the environmental responses to the biochemistry
of the PPO pathway. Breeding strategies targeting the
PALand PPOpathway biochemistry and environmental
response genes are discussed as a more cost-effective
method of mitigating oxidative discolouration then
either modified atmosphere packaging or post-harvest
treatments, although current understanding of the
biochemistry means that such programs are likely to
be limited in nature and it is likely that they will need to be deployed alongside other methods for the foreseeable future
Handoffs and Transitions in Critical Care (HATRICC): Protocol for a Mixed Methods Study of Operating Room to Intensive Care Unit Handoffs
Background: Operating room to intensive care unit handoffs are high-risk events for critically ill patients. Studies in selected patient populations show that standardizing operating room to intensive care unit handoffs improves information exchange and decreases errors. To adapt these findings to mixed surgical populations, we propose to study the implementation of a standardized operating room to intensive care unit handoff process in two intensive care units currently without an existing standard process.
Methods/Design: The Handoffs and Transitions in Critical Care (HATRICC) study is a hybrid effectiveness- implementation trial of operating room to intensive care unit handoffs. We will use mixed methods to conduct a needs assessment of the current handoff process, adapt published handoff processes, and implement a new standardized handoff process in two academic intensive care units. Needs assessment: We will use non-participant observation to observe the current handoff process. Focus groups, interviews, and surveys of clinicians will elicit participants’ impressions about the current process. Adaptation and implementation: We will adapt published standardized handoff processes using the needs assessment findings. We will use small group simulation to test the new process’ feasibility. After simulation, we will incorporate the new handoff process into the clinical work of all providers in the study units. Evaluation: Using the same methods employed in the needs assessment phase, we will evaluate use of the new handoff process. Data analysis: The primary effectiveness outcome is the number of information omissions per handoff episode as compared to the pre-intervention period. Additional intervention outcomes include patient intensive care unit length of stay and intensive care unit mortality. The primary implementation outcome is acceptability of the new process. Additional implementation outcomes include feasibility, fidelity and sustainability.
Discussion: The HATRICC study will examine the effectiveness and implementation of a standardized operating room to intensive care unit handoff process. Findings from this study have the potential to improve healthcare communication and outcomes for critically ill patients.
Trial registration: ClinicalTrials.gov identifier: NCT02267174. Date of registration October 16, 2014
- …
