153 research outputs found

    One single dose of etomidate negatively influences adrenocortical performance for at least 24 h in children with meningococcal sepsis

    Get PDF
    Objective: To investigate the effect of one single bolus of etomidate used for intubation on adrenal function in children with meningococcal sepsis. Design: Retrospective study conducted between 1997 and 2004. Setting: University-affiliated paediatric intensive care unit (PICU). Patients and participants: Sixty children admitted to the PICU with meningococcal sepsis, not treated with steroids. Interventions: Adrenal hormone concentrations were determined as soon as possible after PICU admission, and after 12h and 24h. To assess disease severity, PRISM score and selected laboratory parameters were determined. Measurements and main results: On admission, before blood was drawn, 23 children had been intubated with etomidate, 8 without etomidate and 29 were not intubated. Children who were intubated had significantly higher disease severity parameters than those not intubated, whereas none of these parameters significantly differed between children intubated with or without etomidate. Children who received etomidate had significantly lower cortisol, higher ACTH and higher 11-deoxycortisol levels than those who did not receive etomidate. Arterial glucose levels were significantly lower in children who were intubated with etomidate than in non-intubated children. When children were intubated with etomidate, cortisol levels were 3.2 times lower for comparable 11-deoxycortisol levels. Eight children died, seven of whom had received etomidate. Within 24h cortisol/ACTH and cortisol/11-deoxycortisol ratios increased significantly in children who received etomidate, but not in children who did not, resulting in comparable cortisol/ACTH ratios with still significantly lowered cortisol/11-deoxycortisol ratios 24h after admission. Conclusions: Our data imply that even one single bolus of etomidate negatively influences adrenal function for at least 24h. It might therefore increase risk of death

    Central Nervous System Changes in Pediatric Heart Failure: A Volumetric Study

    Get PDF
    Autonomic dysfunction, mood disturbances, and memory deficits appear in pediatric and adult heart failure (HF). Brain areas controlling these functions show injury in adult HF patients, many of whom have comorbid cerebrovascular disease. We examined whether similar brain pathology develops in pediatric subjects without such comorbidities. In this study, high-resolution T1 brain magnetic resonance images were collected from seven severe HF subjects age (age 8–18 years [mean 13]; left ventricular shortening 9 to 19% [median 14%]) and seven age-matched healthy controls (age 8–18 years [mean 13]). After segmentation into gray matter (GM), white matter, and cerebrospinal fluid (CSF), regional volume loss between groups was determined by voxel-based morphometry. GM volume loss appeared on all HF scans, but ischemic changes and infarcts were absent. HF subjects showed greater CSF volume than controls (mean ± SD 0.30 ± 0.04 vs. 0.25 ± 0.04 l, P = 0.03), but total intracranial volume was identical (1.39 ± 0.11 vs. 1.39 ± 0.09 l, P = NS). Regional GM volume reduction appeared in the right and left posterior hippocampus, bilateral mid-insulae, and the superior medial frontal gyrus and mid-cingulate cortex of HF subjects (threshold P < 0.001). No volume-loss sites appeared in control brains. We conclude that pediatric HF patients show brain GM loss in areas similar to those of adult HF subjects. Substantial changes emerged in sites that regulate autonomic function as well as mood, personality and short-term memory. In the absence of thromboembolic disease and many comorbid conditions found in adult HF patients, pediatric HF patients show significant, focal GM volume loss, which may coincide with the multiple neurologic and psychological changes observed in patients with HF

    Plasma matrix metalloproteinases in neonates having surgery for congenital heart disease

    Get PDF
    During cardiopulmonary-bypass matrix-metalloproteinases released may contribute to ventricular dysfunction. This study was to determine plasma matrix-metalloproteinases in neonates after cardiopulmonary-bypass and their relation to post-operative course. A prospective observational study included 18 neonates having cardiac surgery. Plasma matrix-metalloproteinases-2 and 9 activities were measured by gelatin-zymography pre-operatively, on starting cardiopulmonarybypass, 7–8 min after aortic cross-clamp release, and 1h, 4h, 24h, and 3d after cardiopulmonary-bypass. Plasma concentrations of their tissue inhibitors 1 and 2 were determined by enzyme-linked immunosorbent assay. Cardiac function was assessed by serial echocardiography. Paired t-tests and Wilcoxon tests were used to assess temporal changes, and linear correlation with simultaneous clinical and cardiac function parameters were assessed using Pearson's product-moment correlation coefficient. Plasma matrix-metalloproteinases activities and their tissue inhibitor concentrations decreased during cardiopulmonary-bypass. Matrix-metalloproteinase-2 plasma activity increased progressively starting 1h after cardiopulmonarybypass and returned to pre-operative levels at 24h. Matrix-metalloproteinase-9 plasma activity increased significantly after release of aortic cross-clamp, peaked 7–8min later, and returned to baseline at 24h. Plasma tissueinhibitor 1 and 2 concentrations increased 1h after cardiopulmonary-bypass. Cardiac function improved from 4h to 3d after surgery (p<0.05). There was no evidence of significant correlations between matrix-metalloproteinases or their inhibitors and cardiac function, inotrope scores, organ dysfunction scores, ventilation days, or hospital days. The temporal profile of plasma matrix-metalloproteinases and their inhibitors after cardiopulmonary-bypass in neonates are similar to adults. In neonates, further study should determine whether circulating matrix-metalloproteinases are useful biomarkers of disease activity locally within the myocardium, and hence of clinical outcomes

    Disturbance of Glucose Homeostasis After Pediatric Cardiac Surgery

    Get PDF
    This study aimed to evaluate the time course of perioperative blood glucose levels of children undergoing cardiac surgery for congenital heart disease in relation to endogenous stress hormones, inflammatory mediators, and exogenous factors such as caloric intake and glucocorticoid use. The study prospectively included 49 children undergoing cardiac surgery. Blood glucose levels, hormonal alterations, and inflammatory responses were investigated before and at the end of surgery, then 12 and 24 h afterward. In general, blood glucose levels were highest at the end of surgery. Hyperglycemia, defined as a glucose level higher than 8.3 mmol/l (>150 mg/dl) was present in 52% of the children at the end of surgery. Spontaneous normalization of blood glucose occurred in 94% of the children within 24 h. During surgery, glucocorticoids were administered to 65% of the children, and this was the main factor associated with hyperglycemia at the end of surgery (determined by univariate analysis of variance). Hyperglycemia disappeared spontaneously without insulin therapy after 12–24 h for the majority of the children. Postoperative morbidity was low in the study group, so the presumed positive effects of glucocorticoids seemed to outweigh the adverse effects of iatrogenic hyperglycemia

    Postoperative differences between colonization and infection after pediatric cardiac surgery-a propensity matched analysis

    Get PDF
    BACKGROUND: The objective of this study was to identify the postoperative risk factors associated with the conversion of colonization to postoperative infection in pediatric patients undergoing cardiac surgery. METHODS: Following approval from the Institutional Review Board, patient demographics, co-morbidities, surgery details, transfusion requirements, inotropic infusions, laboratory parameters and positive microbial results were recorded during the hospital stay, and the patients were divided into two groups: patients with clinical signs of infection and patients with only positive cultures but without infection during the postoperative period. Using propensity scores, 141 patients with infection were matched to 141 patients with positive microbial cultures but without signs of infection. Our database consisted of 1665 consecutive pediatric patients who underwent cardiac surgery between January 2004 and December 2008 at a single center. The association between the patient group with infection and the group with colonization was analyzed after propensity score matching of the perioperative variables. RESULTS: 179 patients (9.3%) had infection, and 253 patients (15.2%) had colonization. The occurrence of Gram-positive species was significantly greater in the colonization group (p=0.004). The C-reactive protein levels on the first and second postoperative days were significantly greater in the infection group (p=0.02 and p=0.05, respectively). The sum of all the positive cultures obtained during the postoperative period was greater in the infection group compared to the colonization group (p=0.02). The length of the intensive care unit stay (p<0.001) was significantly longer in the infection group compared to the control group. CONCLUSIONS: Based on our results, we uncovered independent relationships between the conversion of colonization to infection regarding positive S. aureus and bloodstream results, as well as significant differences between the two groups regarding postoperative C-reactive protein levels and white blood cell counts

    Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology

    Get PDF
    This paper aims to provide information and explanations regarding the clinically relevant options, strengths, and limitations of cardiovascular magnetic resonance (CMR) in relation to adults with congenital heart disease (CHD). Cardiovascular magnetic resonance can provide assessments of anatomical connections, biventricular function, myocardial viability, measurements of flow, angiography, and more, without ionizing radiation. It should be regarded as a necessary facility in a centre specializing in the care of adults with CHD. Also, those using CMR to investigate acquired heart disease should be able to recognize and evaluate previously unsuspected CHD such as septal defects, anomalously connected pulmonary veins, or double-chambered right ventricle. To realize its full potential and to avoid pitfalls, however, CMR of CHD requires training and experience. Appropriate pathophysiological understanding is needed to evaluate cardiovascular function after surgery for tetralogy of Fallot, transposition of the great arteries, and after Fontan operations. For these and other complex CHD, CMR should be undertaken by specialists committed to long-term collaboration with the clinicians and surgeons managing the patients. We provide a table of CMR acquisition protocols in relation to CHD categories as a guide towards appropriate use of this uniquely versatile imaging modality
    corecore