792 research outputs found

    Allen Linear (Interval) Temporal Logic --Translation to LTL and Monitor Synthesis--

    Get PDF
    The relationship between two well established formalisms for temporal reasoning is first investigated, namely between Allen's interval algebra (or Allen's temporal logic, abbreviated \ATL) and linear temporal logic (\LTL). A discrete variant of \ATL is defined, called Allen linear temporal logic (\ALTL), whose models are \omega-sequences of timepoints, like in \LTL. It is shown that any \ALTL formula can be linearly translated into an equivalent \LTL formula, thus enabling the use of \LTL techniques and tools when requirements are expressed in \ALTL. %This translation also implies the NP-completeness of \ATL satisfiability. Then the monitoring problem for \ALTL is discussed, showing that it is NP-complete despite the fact that the similar problem for \LTL is EXPSPACE-complete. An effective monitoring algorithm for \ALTL is given, which has been implemented and experimented with in the context of planning applications

    Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp

    Get PDF
    Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses. © 2012 Macmillan Publishers Limited. All rights reserved

    Characterising Deadlines in Temporal Modal Defeasible Logic

    Get PDF
    We provide a conceptual analysis of several kinds of deadlines, represented in Temporal Modal Defeasible Logic. The paper presents a typology of deadlines, based on the following parameters: deontic operator, maintenance or achievement, presence or absence of sanctions, and persistence after the deadline. The deadline types are illustrated by a set of examples

    Prediction of charm-production fractions in neutrino interactions

    Get PDF
    The way a charm-quark fragments into a charmed hadron is a challenging problem both for the theoretical and the experimental particle physics. Moreover, in neutrino induced charm-production, peculiar processes occur such as quasi-elastic and diffractive charm-production which make the results from other experiments not directly comparable. We present here a method to extract the charmed fractions in neutrino induced events by using results from e+ee^+e^-, πN\pi N, γN\gamma N experiments while taking into account the peculiarities of charm-production in neutrino interactions. As results, we predict the fragmentation functions as a function of the neutrino energy and the semi-muonic branching ratio, BμB_\mu, and compare them with the available data

    Glial β-Oxidation regulates drosophila energy metabolism

    Get PDF
    The brain's impotence to utilize long-chain fatty acids as fuel, one of the dogmas in neuroscience, is surprising, since the nervous system is the tissue most energy consuming and most vulnerable to a lack of energy. Challenging this view, we here show in vivo that loss of the Drosophila carnitine palmitoyltransferase 2 (CPT2), an enzyme required for mitochondrial β-oxidation of long-chain fatty acids as substrates for energy production, results in the accumulation of triacylglyceride-filled lipid droplets in adult Drosophila brain but not in obesity. CPT2 rescue in glial cells alone is sufficient to restore triacylglyceride homeostasis, and we suggest that this is mediated by the release of ketone bodies from the rescued glial cells. These results demonstrate that the adult brain is able to catabolize fatty acids for cellular energy production.This work was partially supported by the Flanders Fund for Scientific Research (FWO G 0.666.10N), NEUROBRAINNET IAP 7/16, Flemish Government Methusalem Grant, Spanish Ministry of Science (SAF2010-14906) and Innovation Ingenio-Consolider (CSD2010-00045) and Spanish Ministry of Economy and Competitiveness (SAF2013-45392).Peer Reviewe

    Glial β-Oxidation regulates drosophila energy metabolism

    Get PDF
    The brain's impotence to utilize long-chain fatty acids as fuel, one of the dogmas in neuroscience, is surprising, since the nervous system is the tissue most energy consuming and most vulnerable to a lack of energy. Challenging this view, we here show in vivo that loss of the Drosophila carnitine palmitoyltransferase 2 (CPT2), an enzyme required for mitochondrial β-oxidation of long-chain fatty acids as substrates for energy production, results in the accumulation of triacylglyceride-filled lipid droplets in adult Drosophila brain but not in obesity. CPT2 rescue in glial cells alone is sufficient to restore triacylglyceride homeostasis, and we suggest that this is mediated by the release of ketone bodies from the rescued glial cells. These results demonstrate that the adult brain is able to catabolize fatty acids for cellular energy production.This work was partially supported by the Flanders Fund for Scientific Research (FWO G 0.666.10N), NEUROBRAINNET IAP 7/16, Flemish Government Methusalem Grant, Spanish Ministry of Science (SAF2010-14906) and Innovation Ingenio-Consolider (CSD2010-00045) and Spanish Ministry of Economy and Competitiveness (SAF2013-45392).Peer Reviewe

    Invisible Z-Boson Decays at e+e- Colliders

    Full text link
    The measurement of the invisible Z-boson decay width at e+e- colliders can be done "indirectly", by subtracting the Z-boson visible partial widths from the Z-boson total width, or "directly", from the process e+e- -> \gamma \nu \bar{\nu}. Both procedures are sensitive to different types of new physics and provide information about the couplings of the neutrinos to the Z-boson. At present, measurements at LEP and CHARM II are capable of constraining the left-handed Z\nu\nu-coupling, 0.45 <~ g_L <~ 0.5, while the right-handed one is only mildly bounded, |g_R| <= 0.2. We show that measurements at a future e+e- linear collider at different center-of-mass energies, \sqrt{s} = MZ and \sqrt{s}s ~ 170 GeV, would translate into a markedly more precise measurement of the Z\nu\nu-couplings. A statistically significant deviation from Standard Model predictions will point toward different new physics mechanisms, depending on whether the discrepancy appears in the direct or the indirect measurement of the invisible Z-width. We discuss some scenarios which illustrate the ability of different invisible Z-boson decay measurements to constrain new physics beyond the Standard Model

    The OPERA experiment Target Tracker

    Get PDF
    The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give calorimetric information about each event. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multi-anode photomultiplier tubes. All the elements used in the construction of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method

    Constraining Non-Standard Interactions of the Neutrino with Borexino

    Full text link
    We use the Borexino 153.6 ton.year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainty in the 7Be solar neutrino flux, and backgrounds due to 85Kr and 210Bi beta-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the 85Kr background.Comment: 21 pages, 16 pdf figures, 2 tables. Analysis updated including the uncertainty in sin^2\theta_{23}. Accepted in JHE

    Measurement of electron-neutrino electron elastic scattering

    Get PDF
    The cross section for the elastic scattering reaction nu_e+e- -> nu_e+e- was measured by the Liquid Scintillator Neutrino Detector using a mu+ decay-at-rest nu_e beam at the Los Alamos Neutron Science Center. The standard model of electroweak physics predicts a large destructive interference between the charge current and neutral current channels for this reaction. The measured cross section, sigma_{nu_e e-}=[10.1 +- 1.1(stat.) +- 1.0(syst.)]x E_{nu_e} (MeV) x 10^{-45} cm^2, agrees well with standard model expectations. The measured value of the interference parameter, I=-1.01 +- 0.13(stat.) +- 0.12(syst.), is in good agreement with the standard model expectation of I^{SM}=-1.09. Limits are placed on neutrino flavor-changing neutral currents. An upper limit on the muon-neutrino magnetic moment of 6.8 x 10^{-10} mu_{Bohr} is obtained using the nu_mu and \bar{nu}_mu fluxes from pi+ and mu+ decay.Comment: 22 pages, 11 figure
    corecore