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Abstract. We provide a conceptual analysis of several kinds of deadlines, rep-
resented in Temporal Modal Defeasible Logic. The paper presents a typology of
deadlines, based on the following parameters: deontic operator, maintenance or
achievement, presence or absence of sanctions, and persistence after the deadline.
The deadline types are illustrated by a set of examples.

1 Introduction

Many normative rules in applications of artificial intelligence are concerned with dead-
lines. Bills must be paid before the end of the month; books need to be returned before a
due date; products must be delivered within ten working days. In general we can say that
a deadline combines a specification of a time point or condition δ , with the obligation
to achieve some state of affairs ϕ before condition δ arrives.

Because deadlines combine time and obligations, they are naturally studied by a
combination of temporal logic with deontic logic. Various papers use a combination
of branching time temporal logic (CTL) with Standard Deontic Logic [5,4,3]. In such
logics, the meaning of a deadline clause, i.e., that ϕ should occur before δ , can be ex-
pressed as an obligation which involves the ‘until’-operator: OBL(ϕ Uδ ). This means
that situations in which δ becomes true while ϕ has not been achieved, are considered
to be a violation according to some normative system.

However, such a characterisation of deadlines does not indicate what will happen
after the deadline. Is it required to still complete ϕ even after the deadline, as for late
payments? Or is it impossible or unnecessary to complete ϕ after the deadline, as for
the late delivery of a wedding cake? Is an explicit sanction enforced after the deadline,
or is the sanction simply that achieving one’s goal has become impossible?

Since deadlines can have different functions, it is likely that several notions of dead-
line can be distinguished. In this paper we therefore want to provide a conceptual anal-
ysis of various kinds of deadlines, and to provide a formal characterisation. Such a
characterisation should make it easier to have intelligent systems reason about systems
of deadline clauses, to find out for example whether they are mutually consistent, or
how a course of action can be planned that meets all deadline clauses; compare the
motivation given by [5].
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To express the characterisation, we choose a Temporal Modal Defeasible Logic
which combines the deontic modalities of obligation and permission with temporal in-
tervals. Many normative rules allow for exceptions. Without defeasibility, it would be
impossible to distinguish exceptions from violations. Moreover, a defeasible logic al-
lows for a modular representation of deadline clauses, in which a clause may for exam-
ple override earlier clauses, or override clauses issued by a lesser authority.

Usually, logic papers focus on the logical properties of a newly developed logic. In
this paper, however, we would like to stress the conceptual issues of modelling tem-
poral normative rules. It is necessary to understand deadlines, for example, for the im-
plementation of procurement procedures, or for the management of automated service
level agreements [10]. This research is part of a larger research effort to investigate the
use of defeasible logic for reasoning with legal information [9,8].

The remainder of the paper is structured as follows. In Section 2 we define the
Temporal Modal Defeasible Logic to be used in our characterisation. In Section 3 we
provide a characterisation of different types of deadlines, and provide template formulas
in the logic, to represent these types.

2 Temporal Modal Defeasible Logic

The logical framework of this paper is an interval based variant of Temporal Modal
Defeasible Logic (TMDL), which is an extension of Defeasible Logic [2] to capture the
deontic modalities obligation and permission and some aspects of time. Other variants
of TMDL have proved useful in modelling normative reasoning [9,8] and cognitive
agents [7].

We assume a linear discrete bounded set T of points of time termed ‘instants’ and
over it the temporal order relation >⊆ T ×T . We define intervals [t1, t2] as sets of
instants between the instants t1 and t2. Our framework is meant to incorporate temporal
parameters into a non-monotonic model for deontic reasoning. It is not our intention to
provide a general approach to temporal reasoning, nor an extensive analysis of opera-
tions and relations over time intervals, as e.g. [1].

A TMDL theory consists of a linear discrete bounded set of instants, a set of facts
or indisputable statements, a set of rules, and a superiority relation � among rules
specifying when a rule may override the conclusion of another rule. A strict rule is an
expression of the form ϕ1, . . . ,ϕn→ψ such that whenever the premises are indisputable
so is the conclusion. A defeasible rule is an expression of the form ϕ1, . . . ,ϕn ⇒ ψ

whose conclusion can be defeated by contrary evidence. An expression ϕ1, . . . ,ϕn ; ψ

is a defeater used to defeat some defeasible rules by producing evidence to the contrary.

Definition 1 (Language). Let T be a linear discrete bounded ordered set of instants
of time, in which the minimal unit is u and the lower and higher boundaries of T are
denoted respectively by min and max. Let Prop be a set of propositional atoms, let Mod
be a set of modal operators {OBL,PERM}, and let Lab be a set of labels of rules. The
sets below are defined as the smallest sets closed under the following rules:

Literals Lit = Prop∪{¬p|p ∈ Prop}



Modal Literals ModLit = {X l ,¬X l|X ∈Mod, l ∈ Lit}
Intervals Inter = {T = [t1, t2]|[t1, t2] = {x|t1 ≤ x≤ t2}, t1, t2 ∈T }
Temporal Literals TLit = {l:T |l ∈ Lit, T ∈ Inter}
Temporal Modal Literals TModLit = {ϕ:T |ϕ ∈ModLit, T ∈ Inter}
Rules Rules = {(r ϕ1, . . . ,ϕn→ ψ)|r ∈ Lab, ϕ1, . . . ,ϕn,ψ ∈ TLit∪TModLit}

Ruled = {(r ϕ1, . . . ,ϕn⇒ ψ)|r ∈ Lab, ϕ1, . . . ,ϕn,ψ ∈ TLit∪TModLit}
Ruledft = {(r ϕ1, . . . ,ϕn ; ψ)|r ∈ Lab, ϕ1, . . . ,ϕn,ψ ∈ TLit∪TModLit}
Rule = {Rules∪Ruled ∪Ruledft}

Superiority Relations Sup = {s� r|s,r ∈ Lab}

We shall use some abbreviations: A(r) denotes the set {ϕ1, . . . ,ϕn} of antecedents of the
rule r, and C(r) to denote the consequent ψ of the rule r. We also use Rule[ϕ] for those
rules in Rule whose consequent is ϕ . If γ is a literal, ∼γ denotes the complementary
literal: if q is the positive literal p then ∼q is ¬p; and if q is ¬p, then ∼q is p.

The resulting formalism permits to have expressions such as ψ:[0,20] and
OBLϕ:[1,10]: the former says that ψ holds from 0 to 20, the latter that the obligation
that ϕ applies from 1 to 10. Note that we allow for ‘punctual intervals’, i.e. intervals of
the form [t, t]. As a notational convention, we simply write ϕ:t instead of ϕ:[t, t].

Definition 2 (TMDL Theory). A TMDL theory is a structure D = (T ,F,R,�) where
T a linear discrete bounded totally ordered set of instants of time, F ⊆ TLit∪TModLit
is a finite set of facts, R ⊆ Rule is a finite set of rules such that each rule has a unique
label, �⊆ Sup is a set of acyclic superiority relations.

A conclusion of a theory D is a tagged literal ϕ having one of the following forms:

– +∆ϕ and −∆ϕ , meaning respectively that ϕ is, or is not definitely provable in D,
– +∂ϕ and −∂ϕ , meaning respectively that ϕ is, or is not defeasibly provable in D.

Provability is based on the concept of a derivation (or proof) in D. A derivation is a
finite sequence P = (P(1), . . . ,P(n)) of tagged literals. Each tagged literal satisfies some
proof conditions, which correspond to inference rules for the four kinds of conclusions
we have mentioned above. Before moving to the conditions governing derivability of
conclusions, we need to introduce some preliminary notions.

Definition 3 (Rule applicability). Let # ∈ {∆ , ∂}. If rule r is #-applicable then ∀ϕ ∈
A(r), +#ϕ ∈ P(1..i). If r is #-discarded then ∃ϕ ∈ A(r) such that −#ϕ ∈ P(1..i).

Definition 4 (Modality relations). For any ϕ ∈ ModLit, let the set convert(ϕ) be:
convert(OBLϕ) = {PERMϕ,¬OBL∼ϕ}, convert(¬OBL∼ϕ) = {PERMϕ},
convert(PERMϕ) = {¬OBL∼ϕ}, convert(¬PERM∼ϕ) = {OBLϕ,PERMϕ}.

Definition 5 (Intervals: basic notions). Let ‘start()’ and ‘end()’ be the functions that
return respectively the lower and upper bounds of an interval. For any T1,T2,T3 ∈ Inter,

– T1 v T2 iff start(T2)≤ start(T1) and end(T1)≤ end(T2);
– over(T1,T2) iff start(T1)≤ end(T2) and start(T2)≤ end(T1);
– T1tT2 = T3 iff end(T1)+u = start(T2), start(T3) = start(T1) and end(T3) = end(T2).



We provide below the proof conditions to determine whether a temporal (modal)
literal γ:T is a definite conclusion of a theory D.

If P(i+1) = +∆γ:T then
(1) γ:T ′ ∈ F s.t. T v T ′, or
(2) +∆β :T ∈ P(1..i) s.t. γ ∈ convert(β ), or
(3) ∃r ∈ Rs[γ:T ′],

s.t. T v T ′, r is ∆ -applicable, or
(4) +∆γ:T ′ ∈ P(1..i) and +∆γ:T ′′ ∈ P(1..i),

s.t. T ′tT ′′ = T .

If P(i+1) =−∆γ:T then
(1) γ:T ′ /∈ F s.t. T v T ′, and
(2) −∆β :T ∈ P(1..i) s.t. γ ∈ convert(β ), and
(3) ∀r ∈ Rs[γ:T ′],

s.t. T v T ′, r is ∆ -discarded, and
(4) −∆γ:T ′ ∈ P(1..i) or −∆γ:T ′′ ∈ P(1..i),

s.t. T ′tT ′′ = T .

Defeasible provability deals with conflicts. This requires to state when two literals
are in conflict with each other:

Definition 6 (Complementary modal literals). Let l ∈ Lit and X ∈ Mod. The set
C (Xl) of complements of Xl is defined as follows:
C (OBL l) = {¬OBL l,OBL∼l,¬PERMl,PERM∼l} C (¬OBLl) = {OBLl,¬PERMl}
C (PERMl) = {OBL∼l,¬PERMl} C (¬PERMl) = {¬OBL∼l,PERMl,¬PERM∼l}

As usual with defeasible logic, the derivation of a conclusion follows a three phase
protocol. First we provide an argument in favour of the conclusion we want to prove.
Second, we have to consider all possible counterarguments. Third, we have to rebut
each of those counterarguments, i.e., find counterarguments against them.

In TMDL we must consider the times and intervals associated with the conclusion
and the premises. So to prove a conclusion at time t we must find a rule of which the
interval associated with the conclusion covers t. For counterarguments we look for rules
producing the complement of the conclusion to be proved, and whose interval overlaps
with the interval of the conclusion. The proof conditions are as follows.

If P(i+1) = +∂γ:T then
(1) +∆γ:T ∈ P(1..i), or
(2) −∆β :T ′ ∈ P(1..i),

s.t. β ∈ C (γ), over(T ′,T ), and
(2.1) +∂β :T ′ ∈ P(1..i), γ ∈ convert(β ), or
(2.2) ∃r ∈ Rsd [γ:T ′],

s.t. T v T ′, r is ∂ -applicable, and
(2.2.1) ∀s ∈ R[α:T ′],

s.t. α ∈ C (γ), over(T ′,T )
(2.2.1.1) s is ∂ -discarded, or
(2.2.1.2) ∃w ∈ R[γ:T ′′], s.t. T v T ′′,

w is ∂ -applicable, and w� s, or
(3) +∂γ:T ′ ∈ P(1..i) and +∂γ:T ′′ ∈ P(1..i),

s.t. T ′tT ′′ = T .

If P(i+1) =−∂γ:T then
(1) −∆γ:T ∈ P(1..i), and
(2) +∆β :T ′ ∈ P(1..i),

s.t. β ∈ C (γ), over(T ′,T ), or
(2.1) −∂β :T ′ ∈ P(1..i), γ ∈ convert(β ), and
(2.2) ∀r ∈ Rsd [γ:T ′],

s.t. T v T ′, r is ∂ -discarded, or
(2.2.1) ∃s ∈ R[α:T ′],

s.t. α ∈ C (γ), over(T ′,T )
(2.2.1.1) s is ∂ -applicable, and
(2.2.1.2) ∀w ∈ R[γ:T ′′], s.t. T v T ′′,

w is ∂ -discarded, or w 6� s, and
(3) −∂γ:T ′ ∈ P(1..i) or −∂γ:T ′′ ∈ P(1..i),

s.t.T ′tT ′′ = T .

Let us explain the proof condition of +∂γ:T , the defeasible provability of γ:T . There
are two cases: (i) show that γ:T is already definitely provable (see (1)), or (ii) use the
defeasible part of D. To prove γ:T defeasibly we must show that its complements β are
not definitely provable (see (2)). In clause (2.1), we show the provability of β :T ′ such
that β can be converted into γ (see Definition 4). In clause (2.2), we require that there



is a strict or defeasible rule r ∈ R applicable, with γ:T ′ as its head such that interval T ′

includes T . Now we consider possible attacks: reasoning chains in support of a comple-
ment α of γ: any rule s ∈ R with a complement α:T ′ as its head and over(T ′,T ). These
attacking rules must be discarded (2.2.1.1), or must be counterattacked by a stronger
rule w (2.2.1.2). Finally, in clause (3) we deal with the case where γ is defeasible prov-
able on T ′ and T ′′, which form T .

The proof conditions for −∂γ:T , that γ:T is not defeasibly provable, are structured
in a similar way. Positive derivations are replaced by negative ones and vice versa.

To illustrate the derivations, let us consider the following example:

r1 b:5⇒ OBLa:[10,15] r2 c:6⇒¬OBLa:[6,9]
r3 d:[5,10]⇒¬OBLa:[12,20] r4 e:[7,8]⇒¬OBLa:[10,15]

Given facts {b:[1,5],c:6,d:5,10,e:7}, we want to know if there is an obligation OBLa
at time 10, i.e., +∂OBLa:10. Since b holds from 1 to 5, rule r1 is applicable, and we
have an argument to support the conclusion. Then we have to consider the putative
arguments against the obligation at the chosen time. The range of effectiveness of r2
is [6,9], so that does not overlap with the conclusion of r1, namely [10,15]. The range
of effectiveness of r3 is [12,20] which overlaps with the conclusion of r1, but it does
not cover the intended conclusion (10). So, we can discard this rule as well. Finally, the
range of r4 overlaps with the conclusion of r1, and covers the time for the conclusion
we want to derive. However, in this case, we can rebut the argument since its premise
is that e holds from 7 to 8, but we are given that e holds only at 7, so we cannot use this
rule. Since there are no more arguments against OBLa:10 we can conclude it.

3 Analysing Deadlines

In this section we provide a number of parameters to analyse deadline situations. The
hypothesis is that different types of deadlines can be characterised by instantiations
of these parameters. Each parameter corresponds to one or more template rules. By
making combinations of different template rules, we can generate every possible type
of deadline clause.

(1) Customers must pay within 30 days, after receiving the invoice.

Example (1) can be represented as follows. The deadline refers to an obligation trig-
gered by receipt of the invoice (rule invinit ). After that the customer is obliged to pay.
The obligation terminates when it is complied with (rule invterm). The termination is
modelled by a defeater rule (;). Note that the obligation itself may even persist after
the deadline. Generally, a deadline signals that a violation of the obligation has occurred
(rule invviol). This may or may not trigger an explicit sanction (see below).

invinit get invoice:t1⇒ OBLpay:[t1,max]
invterm OBLpay:t2,pay:t2 ; ¬OBLpay:t2 +1
invviol get invoice:t1,OBLpay:t1 +31⇒ viol(inv):t1 +31



Suppose that the set of facts is {get invoice:0,pay:20}. We can derive +∂get invoice:0,
which makes rule invinit applicable, leading to +∂OBLpay:[0,max], that is, an obliga-
tion to pay applies indefinitely. Rule invterm terminates the obligation at 21. Therefore
rule invviol is not applicable, and we cannot derive a violation: −∂viol(inv):30.

This example can be turned into a general template for the representation of dead-
lines, where χ1, ..χn are one or more contextual constraints, which trigger the existence
of the obligation and fix time variables like t, ϕ is the condition to be achieved, and δ is
the deadline condition. In the example above δ only specifies the 30 days period, but in
general δ could be any action or event, such as ‘having dinner’, in ‘I must finish work
before dinner’, when you do not exactly know when dinner will be. The violation fact
viol(r) is a specific literal, indexed by the name of the group of rules.

rinit χ1:t1, ...,χ:tn⇒ OBLϕ:[t,max] (initialise)
rterm OBLϕ:t,ϕ:t ; ¬OBLϕ:t +1 (terminate)
rviol δ :tδ ,OBLϕ:tδ ⇒ viol(r):tδ (violation)

Achievement or Maintenance? Based on similar ideas about intentions and goals, we
can distinguish achievement obligations, like example (1), from so called maintenance
obligations, like example (2). For an achievement obligation, the condition ϕ must oc-
cur at least once before the deadline. For maintenance obligations, condition ϕ must
obtain during all instants before the deadline. Here, the deadline only signals that the
obligation is terminated. A violation occurs, when the obliged state does not obtain at
some point before the deadline. Note that prohibitions, i.e. obligations to avoid some
‘bad state’, form a large class of maintenance obligations.

(2) Customers must keep a positive balance, for 30 days after opening an bank account.

posinit open account:t1⇒ OBLpositive:[t1, t1 +30]
posviol OBLpositive:t2,¬positive:t2⇒ viol(pos):t2

The generic formalisation for maintenance obligations consists of the following tem-
plate formulas. Note that no termination rule is needed.

rinit main χ:t,δ :tδ ⇒ OBLϕ:[t, tδ ] (initialise maintenance)
rviol main OBLϕ:t,¬ϕ:t⇒ viol(r):t (violation of maintenance)

Persistence after the deadline. By definition, maintenance obligations do not persist
after the deadline. But achievement obligations often do persist after the deadline, until
they are achieved. However, this is not the case for all achievement obligations.

(3) A wedding cake must be delivered, before the wedding party.

In example (3), the obligation to deliver the cake does not persist after the deadline,
since the wedding guests will have no use for it. In addition, the couple who ordered
the cake, are entitled not to pay for the cake, or even claim damages after the deadline
has passed without delivery. This can be seen as a kind of sanction.

In general, the difference between persistent and non-persistent achievement obli-
gations will depend on conventions about the underlying goal of the deadline. Non-
persistent obligations have a termination rule, similar to maintenance obligations.



wedinit order:t1,wedding:t2⇒ OBLcake:[t1, t2]
wedterm OBLcake:t3,cake:t3 ; ¬OBLcake:t3 +1
wedviol wedding:t2,OBLcake:t2⇒ viol(wed):t2

The rules for non-persistent deadlines can be generalised as follows 4.

rinit non pers χ:t,δ :tδ ⇒ OBLϕ:[t, tδ ] (initialise non-persistence)

Explicit or implicit Sanctions. Many normative rules are associated with an explicit
sanction, such as payment of a fine. But this is not always the case. Often there is only
an implicit sanction, of not being able to achieve the goal that underlies the deadline.
For a sanction to be effective, it needs to be strongly disliked by the person sanctioned.

(4) Customers must pay within 30 days, after receiving the invoice. Otherwise, an ad-
ditional fine must be paid.

(5) Customers must keep a positive balance for 30 days after opening an account, oth-
erwise their account is blocked.

(6) A wedding cake must be delivered, before the wedding party. If not, the contract is
breached and (for example) the customer may not have to pay.

An explicit sanction is often implemented through a separate obligation, which is trig-
gered by a detected violation. In this setting, legislators may need further deadlines to
enforce the sanctions, leading to a ‘cascade’ of obligations. The obligation to pay a fine
in (4) is an example of that. In other cases, like in example (5), the sanction is applied
automatically. The wedding cake example (6) is a case of mutual obligations. A late
delivery is a breach of contract. So the sanction is typically that the customer does not
have to pay for the cake. An obligation to pay for the cake may be derived from another
rule r or, alternatively, it is given as a fact. Clearly, in the former case we require that
cakesanc � r. Continuing the previous representations of example (1), (2) and (3), we
add the following rules to account for the sanctions in (4), (5) and (6).

invsanc viol(inv):t⇒ OBLpay fine:[t,max]
possanc viol(pos):t⇒ account blocked:[t,max]
wedsanc viol(wed):t,OBLpay:[t,max]⇒¬OBLpay:[t +1,max]

In example (4), suppose that the set of facts is {get invoice:0}. We have +∂OBLpay:31.
The deadline is not respected, and so we derive +∂OBLpay fine:[31,max]. Regarding
example (5), suppose that the facts are {open account:0,¬positive:[20,30]}. We derive
+∂OBLpositive:[0,30]. The balance rule is violated, so +∂account blocked:[20,max].
In example (6), suppose we have {order:0,OBLpay:[0,max],wedding:12}. Because the
termination rule does not apply, we can derive +∂OBLcake:12. By wedviol we derive
+∂viol(wed):12, and therefore +∂¬OBLpay:[13,max].

Because obligational sanctions are most common, rule invsanc is generalised into a
generic sanction rule, where σ is strongly disliked by the agent being sanctioned.

rsanc viol(r):t⇒ OBLσ :[t,max] (sanction)

4 Only rinit has changed. Alternatively, we could leave rinit unchanged, and alter rterm.



Notice that sanctions are not always needed. In example (7) we see a non-persistent
deadline, with no explicit sanction, apart from the impossibility to achieve one’s goals.

(7) Dinner guests must arrive before dinner.

Obligation or Permission? Deadlines are not only connected with obligations. In ex-
ample (8), there is a permission – or entitlement – which expires at the deadline.

(8) Within 30 days after delivery, customers may return a product to the seller.

Using the principle that an entitlement for one, is an obligation for the other to respect
that entitlement, we could also say that after 30 days the seller is no longer obliged to
take the product back. Permissions are similar to maintenance obligations, and can be
modelled as follows:

retinit delivery:t⇒ PERMreturn product:[t, t +30]

The right to return a product is an example of an achievement permission. Example (9),
roughly the opposite of example (2), illustrates a maintenance permission: the right to
remain in a certain state for a certain period.

(9) Customers may have a negative balance, for at most 30 consecutive days.

Here we assume to fix the time when the account gets a negative balance.

balinit positive:t1−1,¬positive:t1⇒ PERM¬positive:[t1, t1 +30]
balterm ¬positive:[t1, t1 +30],PERM¬positive:[t1, t1 +30]⇒

¬PERM¬positive:[t1 +31,max]
balviol ¬PERM¬positive:t2,¬positive:t2⇒ viol(bal):t2

Although one may observe that (positive) achievement permissions generally do not
have violations or explicit sanctions, violations or sanctions can in fact be connected to
maintenance permissions. After the permission ends, usually an original obligation will
be restored. Remember that ¬PERM¬ϕ ≡ OBLϕ . So, depending on wether you want
to model this as strong or weak permission [9], a negative balance after the permission
has run out, does constitute a violation. In some cases, this may also lead to an explicit
sanction, as illustrated by (10).

(10) Customers may have a negative balance, for at most 30 consecutive days. After
that period, an interest rate of 10% must be paid.

balsanc viol(bal):t⇒ OBLpay interest:t

This discussion leads to the following general template rules, for achievement and main-
tenance permission, respectively. The sanction rule is again rsanc.

rinit perm χ:t,δ :tδ ⇒ PERMϕ:[t, tδ ] (init. achiev. perm.)
rinit perm main χ:t,δ :tδ ⇒ PERMϕ:[t, tδ ] (init. maint. perm.)
rterm perm main χ:t,δ :tδ , PERMϕ:[t, tδ ]⇒¬PERMϕ:[tδ +1,max] (term. maint. perm.)
rviol perm main ¬PERMϕ:t ′,ϕ:t ′⇒ viol(r):t ′ (viol. maint. perm.)



For achievement permissions or entitlements it generally does not make sense to have
an explicit sanction. There is only the implicit sanction, namely that the agent is not
able to achieve the underlying goals, made possible by the permission. This is a very
common situation for permissions, but also for opportunities. In example (11), there is
no deontic operator at all. Here, it is the practical opportunity to travel, which expires.

(11) A traveller wants to travel to Rome. The last train to Rome departs at 22:05.

So whence the popular idea that you must return the product within 30 days, or that you
must catch the train? Well, given the fact that you are not satisfied with the product and
that you intend to return the product, or given the fact that you intend to travel, the only
way to achieve these intentions is before the deadline. The necessity is not deontic, but
is based on practical reasoning. We observe that many deadlines have this hybrid nature
of deontic and practical reasoning.

This completes our list of parameters. We can now construct different types of dead-
lines by varying the parameters discussed above. The result is shown in Table 1. For
each of the types, we have listed the corresponding examples.

achieve operator sanction persist examples rule templates
1. Ach. OBL Y Y payment, fine (4) rinit ,rterm,rviol ,rsanc
2. Ach. OBL Y N wedding cake (3), (6) rinit non pers,rterm,rviol ,rsanc
3. Ach. OBL N Y payment, no fine (1) rinit ,rterm,rviol
4. Ach. OBL N N dinner guests (7) rinit non pers,rterm,rviol
5. Ach. PERM Y Y no sense
6. Ach. PERM Y N no sense
7. Ach. PERM N Y no sense
8. Ach. PERM N N return product (8) rinit perm
9. Maint. OBL Y Y no sense
10. Maint. OBL Y N account, blocked (5) rinit main,rviol main,rsanc
11. Maint. OBL N Y no sense
12. Maint. OBL N N account (2) rinit main,rviol main
13. Maint. PERM Y Y no sense
14. Maint. PERM Y N negative, interest (10) rinit main perm, rterm main perm,

rviol main perm, rsanc
15. Maint. PERM N Y no sense
16. Maint. PERM N N negative (9) rinit main perm, rterm main perm,

rviol main perm

Table 1. Deadline typology

From the table it is clear that some combinations of parameters do not make sense.
First, (positive) achievement permissions do not have sanctions, except for the implicit
sanction of not being able to achieve one’s goal. That excludes type 5, 6 from the table.
Moreover, the deadline of a permission or a maintenance obligation, is the moment from
which the permission or obligation no longer persist. So by definition, type 5 (again),
7, 9, 11, 13 and 15 are ruled out as well. The remaining 9 deadline types have been
illustrated by examples. By a combination of the template rules for each of these types,
we can therefore represent each possible deadline type in a uniform way.



4 Conclusions

In this paper we have given an analysis of deadlines, expressed in Temporal Modal
Defeasible Logic. We have chosen a defeasible logic, because it can distinguish excep-
tions from violations, and because it allows us to have rules override the effect of other
rules. This makes it relatively straightforward to model the initiation, termination and
violation rules that generally specify a deadline. We have chosen to use intervals, be-
cause they provide a natural representation of deadlines, in particular of the distinction
between achievement and maintenance obligations.

Although defeasible logic has been already extended to represent contracts [6], this
is the first attempt to integrate time. In artificial intelligence, Allen’s [1] interval algebra
is widely applied. Allen provides a model of the various ways in which temporal inter-
vals may interact and overlap. Note, however, that the satisfiability problem in Allen’s
algebra is NP-complete [11], which motivated the study of complexity in subalgebras.
Although our logic is less expressive and does not cover Allen’s algebra operations, its
computational complexity is a matter of future research.

Previous work on deadlines typically uses a combination of deontic logic and
branching time temporal logic [5,4,3]. However, existing work has typically not ad-
dressed what happens after the deadline. There are many kinds of deadlines, with dif-
ferent functions. In this paper we have presented a typology of deadlines, using the
following parameters: distinction between achievement and maintenance obligations,
persistence of the obligation after the deadline, presence of an explicit sanction and
the type of operator, obligation or permission. By combining template rules for each of
these parameters, we can give a formal characterisation of each of these deadline types.
Currently, the typology is validated against a case study of a rental agreement.
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