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Abstract. The relationship between two well established formalisms for
temporal reasoning is first investigated, namely between Allen’s interval
algebra (or Allen’s temporal logic, abbreviated ATL) and linear temporal
logic (LTL). A discrete variant of ATL is defined, called Allen linear tem-
poral logic (ALTL), whose models are ω-sequences of timepoints, like in
LTL. It is shown that any ALTL formula can be linearly translated into
an equivalent LTL formula, thus enabling the use of LTL techniques and
tools when requirements are expressed in ALTL. Then the monitoring
problem for ALTL is discussed, showing that it is NP-complete despite
the fact that the similar problem for LTL is EXPSPACE-complete. An
effective monitoring algorithm for ALTL is given, which has been imple-
mented and experimented with in the context of planning applications.

1 Introduction

Allen’s interval algebra, also called Allen’s temporal logic (ATL) in this paper, is
one of the best established formalisms for temporal reasoning [9]. It is frequently
used in AI, especially in planning. Linear temporal logic (LTL) [13] is success-
fully applied in program verification, temporal databases, and related domains.
Despite the widespread use of both ATL and LTL, there is no formal and system-
atic investigation of their relationship. This paper makes a step in this direction.
To have a semantic basis for such a relationship, we define a discrete variant of
ATL, called Allen linear temporal logic (ALTL), whose syntax and complexity of
satisfiability are the same as in ATL, but whose models resemble those of LTL.

We show that ALTL can be linearly encoded into a subset of LTL. This encod-
ing yields the NP-completeness of the satisfiability problem for an ATL (proposed
in [5]) slightly richer than the original one proposed by Allen. On the practical
side, this result allows us to use the plethora of techniques and analysis tools
developed for LTL on requirements (or compatibilities) expressed using ATL.
Since ATL is the logic of planning, and since validation and verification (V&V)
of complex plans for systems with decisional autonomy is highly desirable, if not
crucial, in many applications, this automated translation into LTL potentially
enables us to use well-understood V&V techniques and tools in a domain lacking
(but in need of) them. Further, it may also support the suggestion made in [3]
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that LTL can be itself seriously regarded as a suitable formalism for temporal
reasoning in AI, and particularly in planning. There are, however, complexity
aspects that cannot be ignored (some of them pointed in this paper).

The importance of monitoring in planing cannot be overestimated. For ex-
ample, an autonomous rover whose execution plans have been rigorously verified
may still fail for reasons such as hardware or operating system failures, unex-
pected terrain in an unknown environment, etc. Having monitors to check online
the execution of plans step by step and to trigger recovery code in case of viola-
tions is of crucial importance. It is the challenge of generating efficient monitors
from planning requirements that motivated the work in this paper.

We argue that a blind use of monitoring algorithms for LTL to monitor ALTL
formulae is not feasible even on small ALTL formulae, and then give a special-
purpose monitoring algorithm for ALTL which only needs to call a boolean sat-
isfiability checker at each step, on a boolean proposition smaller in size than the
original ALTL-formula. This algorithm also proves that the monitoring problem
for ALTL is NP-complete, in spite of the fact that the monitoring problem for
LTL is EXPSPACE-complete. This monitoring algorithm has been implemented
and experimented with in the context of planning for autonomous rovers.

Preliminaries. We assume the reader familiar with Linear Temporal Logic
(LTL) [13]. We here only recall some basics and introduce our notation. LTL is
interpreted in “flows of time”, modeled as strict linear orders (T,<), where T
is a nonempty set of “time points”.The LTL language consists of propositional
symbols (p0, p1, · · ·), boolean operators (¬ and ∧), and temporal operators U
(“until”) and ◦ (“next”), and LTL formulae follow the common syntax

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2 | ◦ ϕ.
LTL models are triples M = (T,<, v) such that (T,<) is a strict total order (a
flow of time) and, v is a map called valuation associating with each variable p a
set v(p) ⊆ T of time points (where p is supposed to be true). The satisfaction
relation M |= ϕ is defined as in [13].

Other important temporal operators, such as ♦(eventually) and � (always),
are expressible using U , such as ♦ϕ = true U ϕ (ϕ will eventually hold) and
�ϕ = ¬♦¬ϕ (ϕ will always hold). The operator ♦ can also be expressed in
terms of �, namely ♦ϕ = ¬�¬ϕ. In this paper we only need the fragment of
LTL with ♦ and �, without ◦ and U . Since ♦ and � can be defined in terms of
each other, we take the liberty to call this fragment LTL� (we could have also
called it LTL♦). The “satisfiability problem” for a formula ϕ is concerned with
whether there is some model M such that M |= ϕ. The satisfiability problem
of LTL formulae is PSPACE-complete, while the satisfiability of LTL� is NP-
complete [15].

2 Allen (Linear) Temporal Logic - ATL (ALTL)

Allen Temporal Logic (ATL) [1] is specified as a framework to deal with in-
complete relative temporal information such as “Event A is before event B”.



Instead of adopting time points, Allen takes intervals as the primitive temporal
quantity. He introduced 13 (mutually exclusive) basic binary relations between
any two intervals. In AI planning, ATL is used to reason about concurrency and
temporal extent; action instances and states are described in terms of tempo-
ral intervals that are linked by constraints. Attributes whose states change over
time are called state variables and can be thought of as concurrent threads. The
history of values of a state variable over a period of time is called a “timeline”.
Thus, a timeline consists of a sequence of intervals. It is convenient to think
of each interval as a structure unit, called token and involving a corresponding
procedure. The interval constraints among all possible values that must occur
among tokens for a plan to be legal are organized in a set of compatibilities. A
compatibility determines the necessary correlation with other procedure invoca-
tions in a legal plan, i.e., which procedures must precede or follow others, which
should be co-temporal, etc.

Example 1. To illustrate the use of ATL, let us consider the classical (in panning)
monkey/banana problem, used as a running example. A monkey is at location
“x”, the banana is hanging from the tree. The monkey is at height “Low”, but
if it climbs the tree then it will be at height “High”, same as the banana. The
available actions are “Going” from a place to another, “Climbing” (up) and
“Climbing Down”, and “Grabbing” an object.

Attributes. BANANA has one state variable “Banana-sv” saying if the monkey
has the banana or not. LOCATION has one variable “Location-sv” for the loca-
tion of the monkey. ALTITUDE has one variable “Altitude-sv” for the height.

Low Climbing High Climbing−Down Lowaltitude−sv

ALTITUDE

Going(x,tree)At(x) At(tree)location−sv
LOCATION

Not−have−banana Grabbing−banana Have−bananabanana−sv

BANANA

During

Fig. 1. Attributes and compatibilities

Compatibilities. Now that we have the state variables, we can consider their
compatibilities (i.e., causal and temporal relationships between attributes):

– Have-banana (“Hb”) requires Grabbing-banana (“Gb”) which requires Not-
have-banana (“Nhb”). Grabbing-banana is performed while High and At(tree).

– At(tree) (“@(tree)”) requires going from the location “x” to the tree which
requires At(x) (“@(x)”). Going(x,tree) (“G(x,tree)”) is performed while Low.

– High (“H”) requires Climbing (“C”) which requires Low (“L”), and Climbing-
Down (“CD”) requires High. Climbing is performed while At(tree).



These compatibilities can be formally specified in ATL as follows:

Meets(Nhb, Gb) ∧ Meets(Gb,Hb) ∧ During(Gb,@(tree))∧ During(Gb, H)) ∧
Meets(@(x),G(x, tree))∧Meets(G(x, tree),@(tree))∧During(G(x, tree), L)∧
Meets(L,C)∧Meets(C,H)∧Meets(H,CD)∧Meets(CD, L)∧During(C,@(tree)).

Let us consider the subformula consisting of the first four conjuncts above, and
suppose that an unexpected “flying monkey” wants the banana. It climbs the
tree, but it cannot reach for the banana. Being a flying monkey, it jumps for
the banana, grabs it while gliding when it is still High and At(tree), but as it
glides it leaves the tree location. Supposing that it leaves the tree location at the
same time it changes the status from Grabbing-banana to Have-banana, one can
notice that the third conjunct is violated. Indeed, Gb must hold during @(tree),
meaning that there must be some (non-zero) periods of time in which the monkey
was at the tree location before and after grabbing the banana.

It is often useful to state that some propositions hold all the time or eventually
during an interval. For example, assume one more state predicate, hungry, saying
whether the monkey is hungry or not, and assume that we want to state that
monkeys should grab and have bananas only if they are hungry and do not
already have bananas. This can be done with the following additional conjunct:

Occurs(hungry, Nhb) ∧ Holds(hungry, Gb) ∧ Holds(hungry, Hb) �

There are different views on how intervals should be modeled in different time
flows. A common interpretation is that the intervals are ordered pairs of distinct
points in Q or R. For simplicity, it is convenient to use semantics where intervals
are arbitrary convex non-empty subsets of time points of an arbitrary time flow.

Definition 1. If P is a set of atomic propositions and I is a set of inter-
vals, then an Allen temporal logic formula formula over P and I, or an
ATL(P , I)-formula or even just a formula when P and I are understood from
context, is any boolean combination of basic formulae of the form:

– Equals(i, j),
– Before(i, j) and After(i, j),
– Overlaps(i, j) and OverlappedBy(i, j),
– Meets(i, j) and MetBy(i, j),
– Contains(i, j) and During(i, j),
– Starts(i, j) and StartedBy(i, j),
– Ends(i, j) and EndedBy(i, j),
– Holds(p, i) and Occurs(p, i),

where i, j ∈ I and p ∈ Bool(P).

Bool(P) is the set of boolean propositions over variables in P . Interestingly,
the original formulation of ATL [1] did not include Holds and Occurs; motivated
by practical reasons, they were added later in [5]. To define a formal semantics
of ATL we need to first define an appropriate notion of model.



Definition 2. Let (T,<) be a strict total order, i.e., < is transitive and anti-
symmetric (not reflexive). The relation < is tacitly extended to a strict partial
order on subsets of T , namely X < Y iff x < y for all x ∈ X and y ∈ Y . Also,
by abuse of notation, we may write just x instead {x}; thus, x < Y means that
x < y for all y ∈ Y . For x, y ∈ T let (x, y) be the set {z ∈ T | x < z < y}. A
subset C of T is <-convex, or simply convex, iff (x, y) ⊆ C for any x, y ∈ C.

In R, for example, the convex sets are precisely the intervals. Recall that
intervals in R can be open or closed on any of their ends, and that they may be
bound by −∞ or +∞ at their left or right ends, respectively.

Definition 3. A (P , I)-interval model (or simply an interval model when
P and I are understood) is a structure M = (T,<, v, σ), where (T,<) is a strict
total order (modeling the intended flow of time), v : P → 2T is a valuation
map assigning to each atomic proposition p ∈ P a set of time points v(p) (in
which the proposition is assumed to be true), and σ is a map that associates with
every interval i ∈ I a non-empty convex subset σ(i) of T . We may also refer to
(P , I)-interval models as models of ATL(P , I).

We are now ready to give the semantics of ATL.

Definition 4. An interval model M = (T,<, v, σ) satisfies:

– Equals(i, j) iff σ(i) = σ(j);
– Before(i, j) or After(j, i) iff there is some t ∈ T such that σ(i) < t < σ(j);
– Overlaps(i, j) or OverlappedBy(j, i) iff σ(i) ∩ σ(j) 	= ∅ and there are some
ti ∈ σ(i) and tj ∈ σ(j) such that ti < σ(j) and σ(i) < tj;

– Meets(i, j) or MetBy(j, i) iff σ(i) < σ(j) and there is no t ∈ T such that
σ(i) < t < σ(j);

– Contains(i, j) or During(j, i) iff there are some ti, t′i ∈ σ(i) such that ti <
σ(j) < t′i;

– Starts(i, j) or StartedBy(j, i) iff σ(i) ⊂ σ(j), there is no tj ∈ σ(j) such that
tj < σ(i), but there is some tj ∈ σ(j) such that σ(i) < tj;

– Ends(i, j) or EndedBy(j, i) iff σ(i) ⊂ σ(j), there is no tj ∈ σ(j) such that
σ(i) < tj, but there is some tj ∈ σ(j) such that tj < σ(i);

– Holds(p, i) iff σ(i) ⊆ v(p); and
– Occurs(p, i) iff σ(i) ∩ v(p) 	= ∅ iff ¬Holds(¬p, i).

Satisfaction is defined as usual on boolean combinations of ATL formulae. We
use the notation M |=ATL ϕ to denote the fact that the interval structure M
satisfies the ATL formula ϕ.

Therefore, Meets(i, j) holds iff j starts immediately after i. On the other hand,
Before(i, j) holds iff i starts and ends before j, but there is also some proper
time elapsed between the end of i and the beginning of j. Overlaps(i, j) holds
iff i starts strictly before j starts, they have some common time points, and i
ends strictly before j ends. Contains(i, j) holds iff j starts strictly after i starts
and terminates strictly before i terminates. Starts(i, j) holds iff i and j start



together but j continues (strictly) after i ends; dually, Ends(i, j) holds iff i and j
terminate together but j starts strictly before i starts. Holds(p, i) is satisfied iff
p holds at any time point in i, while Occurs(p, i) is satisfied iff p holds at some
time point in i. The NP-completeness of the satisfiability problem problem for
ATL without Holds [16] gives us immediately the NP-hardness of our ATL with
Holds above. We will show in the next section that it is NP-complete.

In many practical applications of interest, time elapses at a discrete and enu-
merable rate. We next define a variant of Allen temporal algebra in which the
support of the interval models are ω-sequences of time points, that is, linear (in-
finite) sequences t1 < t2 < t3 < · · · < tn < · · ·. We write these strict total orders
compactly as t1t2t3 . . . tn . . .. We call the new logic Allen Linear Temporal
Logic (ALTL). Note that ALTL has the same syntax as ATL and its satisfaction
relation is defined like in ATL, but that its models are structures of the form
M = (t1t2 . . . , v, σ), where t1t2 . . . are ω-sequences of time points and σ maps
intervals in I into non-empty convex sets σ(i) of T = {t1, t2, . . .} (with the ex-
pected strict total ordering < defined as tm < tn iff m < n). It is easy to see
that the convex sets of T are either finite sets of the form {tm, tm+1, . . . , tn} for
some 0 < m ≤ n, or infinite sets of the form {tm, tm+1, . . .} for some 0 < m.

It is easy to see that the restricted models of ALTL do not affect in any way
the complexity or expressivity of ATL. Indeed, for any model M = (T,<, v, σ)
of ATL we can construct a model M′ = (T ′, <′, v′, σ′) of ALTL as follows:

1. Define on T the “behavioral” equivalence relation ∼ with respect to interval
and atomic proposition memberships; formally, t1 ∼ t2 iff (for any atomic
proposition p, either t1, t2 ∈ v(p) or t1, t2 	∈ v(p)) and (for any interval i,
either t1, t2 ∈ σ(i) or t1, t2 	∈ σ(i));

2. Add to T ′ precisely one element from each equivalence class of ∼; therefore,
T ′ ⊆ T ;

3. take <′, v′ and σ′ to be the restrictions of <, v and σ to T ′, respectively.

It is easy to see that M′ is a model of ALTL which satisfies precisely the same
formulae that M satisfies in ATL (syntax is the same in ATL and ALTL), because
they satisfy the same basic formulae.

Supposing that M is the continuous behavior of a dynamic system that one
wants to observe or monitor, in order to ensure the correctness of the monitoring
process (i.e., that ATL-requirements violations are reported correctly at runtime)
one should make sure that the observation points are frequent enough to guar-
antee that at least one element (timepoint or state snapshot) of each equivalence
class has been observed by the monitor. If this property is not respected then
erroneous behaviors can be wrongly reported or missed. For example, a “meets”
(or “before”) relation may look correct (wrong) just because no timepoint was
generated in-between the two intervals, so they look as if they meet each other.
The problem of efficient system instrumentation to emit a minimal, but not less
than necessary, number of events to system observers/monitors is certainly very
important (to reduce the undesirable runtime monitoring overhead) and seems
interesting, but we do not discuss it here. From here on we assume that models
of ALTL are available.



3 Linear Translation of ALTL into LTL

We next define an automatic encoding of ALTL into LTL�. Encoding a logic
into another logic is a technically intricate concept, which can be defined quite
precisely but which we avoid discussing here. Instead, we here define our ALTL-
2-LTL encoding at syntactic level and then just state and prove its semantic
correctness. The reader interested in a deeper understanding of why the results
below indeed give an encoding of one logic into another logic is referred to [6].

Note that the models of ALTL differ from those of LTL in that they contain
a concrete interpretation for each interval. Therefore, in order to establish a
semantic relationship between the models of the two logics, we need to first add
syntactic support for “intervals” to LTL. A simple way to do this is to add an
atomic propositional symbol ∈i to the syntax of LTL for each interval i ∈ I,
with the intuition that a time point is in the interval i in a model of ALTL if and
only if the proposition ∈i holds in that time point in the corresponding model
of LTL. Moreover, we need to also capture via corresponding LTL formulae the
fact that intervals are interpreted into non-empty convex sets in ALTL models.

Definition 5. Let PI be the set of atomic propositions P ∪ {∈i | i ∈ I} and let
ΨI be the set of LTL formulae {ψi | i ∈ I} over propositions in PI, where ψi is
the formula ♦∈i ∧ ¬♦(∈i ∧ ♦(¬∈i ∧ ♦∈i)) for each i ∈ I.

The following establishes the relationship between models of ALTL and of LTL:

Proposition 1. There is a bijection between (P , I)-interval models and models
of LTL(P ∪ {∈i | i ∈ I}) that satisfy ΨI .

Proof. Let M = (T,<, v, σ) be a tuple where (T,<) is an ω-sequence, v is a map
P → 2T , and σ is a map I → 2T ; what M is missing to be a model of ALTL(P , I)
is the requirements that σ(i) is non-empty and convex for any i ∈ I. Then we
can build a model N = (T,<, u) of LTL(P ∪{∈i | i ∈ I}), where u(p) = v(p) for
all p ∈ P and u(∈i) = σ(i) for all i ∈ I. Conversely, for any model N = (T,<, u)
of LTL(P ∪ {∈i | i ∈ I}) one can build a tuple M = (T,<, v, σ), where v is
the restriction of u to P and σ(i) is defined as u(∈i) for any i ∈ I. What is
left to prove is that σ(i) is non-empty and convex for any i ∈ I if and only if
N |=LTL ΨI . First, note that, for any i ∈ I, σ(i) 	= ∅ is equivalent to N |=LTL ♦∈i.
Second, since σ(i) is convex if and only if there are no time points tm, tn, tk
with 0 < m < n < k such that tm, tk ∈ σ(i) and tn 	∈ σ(i), one deduces that
σ(i) is convex if and only if N |=LTL ¬♦(∈i ∧ ♦(¬∈i ∧ ♦∈i)). Therefore, σ(i) is
non-empty and convex for each i ∈ I if and only if N |=LTL ΨI . �

Definition 6. We let [·] define the bijection above, that is, if M is a (P , I)-
interval model then [M] is the corresponding model of LTL(P ∪ {∈i | i ∈ I})
satisfying ΨI , defined as in the proof of Proposition 1.

We are now ready to define the first part of our syntactic encoding of ALTL
formulae into LTL formulae.



Definition 7. Let [·] be the function taking formulae ϕ in ALTL(P , I) into for-
mulae [ϕ] in LTL(P ∪ {∈i | i ∈ I}) defined inductively as follows:

– [¬ϕ] is ¬[ϕ];
– [ϕ1 ∧ ϕ2] is [ϕ1] ∧ [ϕ2];
– [Equals(i, j)] is �(∈i ⇔ ∈j);
– [Before(i, j)] and [After(j, i)] are ♦(∈i ∧ ♦(¬∈i ∧ ¬∈j ∧ ♦∈j));
– [Meets(i, j)] and [MetBy(j, i)] are

♦(∈i ∧ ♦∈j ∧ ¬♦(∈i ∧ ∈j) ∧ ¬♦(¬∈i ∧ ¬∈j ∧ ♦∈j));
– [Overlaps(i, j)] and [OverlappedBy(j, i)] are

♦(∈i ∧ ¬∈j ∧ ♦(∈i ∧ ∈j ∧ ♦(¬∈i ∧ ∈j)));
– [Contains(i, j)] and [During(j, i)] are ♦(∈i∧¬∈j ∧♦(∈i∧∈j ∧♦(∈i∧¬∈j)));
– [Starts(i, j)] and [StartedBy(j, i)] are

�(∈i ⇒ ∈j) ∧ ¬♦(∈j ∧ ¬∈i ∧ ♦∈i) ∧ ♦(∈j ∧ ¬∈i);
– [Ends(i, j)] and [EndedBy(j, i)] are

�(∈i ⇒ ∈j) ∧ ♦(∈j ∧ ¬∈i) ∧ ¬♦(∈j ∧ ∈i ∧ ♦(∈j ∧ ¬∈i));
– [Holds(p, i)] is �(∈i ⇒ p); and
– [Occurs(p, i)] is [¬Holds(¬p, i)], that is, ♦(∈i ∧ p).

Example 2. Let us consider again the subformula

(Meets(Nhb, Gb) ∧Meets(Gb, Hb) ∧During(Gb,@(tree)) ∧During(Gb, H))

of the formula that characterizes the compatibilities of the monkey bananas
problem (see Example 1), to illustrate how to encode an ALTL formula into an
equivalent LTL� one. Its encoding is:

♦(∈Nhb
∧ ♦∈Gb

∧ ¬♦(∈Nhb
∧ ∈Gb

) ∧ ¬♦(¬∈Nhb
∧ ¬∈Gb

∧ ♦∈Gb
))∧

♦(∈Gb
∧ ♦∈Hb

∧ ¬♦(∈Gb
∧ ∈Hb

) ∧ ¬♦(¬∈Gb
∧ ¬∈Hb

∧ ♦∈Hb
))∧

♦(∈@(tree) ∧ ¬∈Gb
∧ ♦(∈@(tree) ∧ ∈Gb

∧ ♦(∈@(tree) ∧ ¬∈Gb
)))∧

♦(∈H ∧ ¬∈Gb
∧ ♦(∈H ∧ ∈Gb

∧ ♦(∈H ∧ ¬∈Gb
))) ∧ (

∧
i∈I ψi),

where I = {Nhb, Hb, H,Gb,@(tree)} and ψi is ♦∈i ∧¬♦(∈i ∧♦(¬∈i ∧♦∈i)). As
expected, the LTL encoding of the entire formula in Example 1 is very large. �

Appendix A discusses an implementation of this encoding based on term rewrit-
ing using the Maude [4] system.

Theorem 1. Given an ALTL(P , I) formula ϕ and a (P , I)-interval model M,
then M |=ALTL ϕ iff [M] |=LTL [ϕ].

Proof. Structural induction on ϕ. If ϕ has the form ¬ϕ1 then M |=ALTL ϕ
is equivalent to saying that it is not the case that M |=ALTL ϕ1, which, by the
induction hypothesis and Definition 7, is equivalent to saying that [M] |=LTL [ϕ].
The case where ϕ has the form ϕ1 ∧ ϕ2 is similar. What is left to show is that
the property holds when ϕ is any of the interval relations. Let us discuss only
one of them, for example Meets(i, j). Suppose that M = (T,<, v, σ) and recall
that σ(i) is non-empty for any interval i. By Definition 4, M |=ALTL Meets(i, j)



iff σ(i) < σ(j) and there is no t ∈ T such that σ(i) < t < σ(j). By the way [M]
is built and because ψi and ψj ensure the non-emptiness and the convexity of
the trace fragments in which ∈i and ∈j hold, This is equivalent to saying that ∈j

holds strictly after ∈i, i.e., the ♦(∈i∧♦∈j ∧¬♦(∈i∧∈j)∧ ...) part of [Meets(i, j)],
and that there is no period of time following ∈i that appears before ∈j in which
neither ∈i nor ∈j holds, i.e., the ♦(...¬♦(¬∈i ∧¬∈j ∧♦∈j)) part of [Meets(i, j)].
The result can be proved similarly for the other intervals. �

Our goal next is to reduce the satisfiability problem for ALTL to LTL� sat-
isfiability, known to be an NP-complete problem [15]. Theorem 1 gives us only
half of the result, namely that if a formula ϕ is satisfiable in ALTL then the for-
mula [ϕ] is satisfiable in LTL�. To get the other half, one could define a slightly
different translation of ALTL formulae, namely one that would also include the
conjunction of the formulae in ΨI . The problem with that is, however, that I
can be infinite, meaning that the generated LTL formula would be infinite. For-
tunately, only the intervals that explicitly appear in ϕ need to be taken into
account, thus making our transformation finite:

Definition 8. For an ALTL(P , I) formula ϕ, let Iϕ be the finite set of intervals
appearing in ϕ and let 〈ϕ〉 be the formula [ϕ]∧∧

ΨIϕ in LTL(P ∪{∈i | i ∈ Iϕ}).
Proposition 2. Given a formula ϕ in ALTL(P , I), the following are equivalent:

(1) ϕ is satisfiable in ALTL(P , I);
(2) 〈ϕ〉 is satisfiable in LTL(P ∪ {∈i | i ∈ Iϕ}); and
(3) 〈ϕ〉 is satisfiable in LTL(P ∪ {∈i | i ∈ I}).
Proof. Since a model over more atomic propositions can be also regarded as a
model over fewer propositions, it is immediate that (3) implies (2). By Theorem
1, any model of ϕ in ALTL(P , I) yields a model of [ϕ] in LTL(P ∪ {∈i | i ∈ I})
that satisfies ΨI . Therefore, (1) implies (3). To show that (2) implies (1), by
Proposition 1 it suffices to show that any model in LTL(P ∪ {∈i | i ∈ Iϕ})
satisfying ΨIϕ can be extended, by just adding appropriate valuations for the
additional atomic propositions to assure that the satisfaction of ϕ is not affected,
to a model in LTL(P∪{∈i | i ∈ I}) satisfying ΦI . This can be done many different
ways. One straightforward model extension is to require that each proposition
in {∈i| i ∈ I − Iϕ} holds in precisely one (arbitrary) time point.

Corollary 1. The satisfiability problem for ALTL is NP-complete.

Proof. By Proposition 2, an ALTL formula ϕ is satisfiable iff 〈ϕ〉 is satisfiable
as an LTL formula. Since 〈ϕ〉 can be generated linearly in the size of the ϕ and
since LTL-satisfiability is NP-complete, ALTL-satisfiability is also NP-complete.

4 Monitoring ALTL

In this section we address the following two questions: (1) What is the moni-
toring complexity for ALTL? (2) Can we find an effective monitoring algorithm



for ALTL? Regarding the first question we show that, despite the fact that the
monitoring problem for LTL is EXPSPACE-complete [14], the monitoring prob-
lem for ALTL is NP-complete. Regarding the second, we first argue that a blind
use of monitoring algorithms for LTL may be unfeasible in large applications and
then propose an ALTL-specific monitoring algorithm which avoids the complex-
ity of monitoring LTL-formulae. More precisely, we give a monitoring algorithm
for ALTL whose most expensive task is to check the satisfiability of a boolean
formula that is incrementally smaller (in the sense that some of its variables are
irreversibly replaced by true or false) with each event received from the mon-
itored system, and which initially has precisely the size of the original ALTL
formula. Thus, the answer to (1) follows as a corollary to our solution to (2).

Let us first describe the “monitoring problem” for LTL. Given an LTL formula
ξ of size n and a “running system” abstracted by its incrementally emitted
events (or abstract states encoded by the atomic propositions that “hold” in
them) t1, t2, ..., the problem is to report when a bad prefix is reached, that is,
when a finite trace t1t2..tm is encountered such that there is no infinite trace
t1t2..tmtm+1.. that satisfies ξ. We here assume that storing the events is not an
option. If in a particular application storing the events is feasible, then one can
traverse them backwards each time a new event tm is generated using a dynamic
programming algorithm [14] and answer the problem polynomially with m and
n; however, note that m can be large enough so that an algorithm linear in the
continuously increasing execution trace at each emitted event can become easily
more impractical than one just exponential in the formula but constant in the
trace (e.g., when one generates an automata monitor from it, like in [2]).

One can reduce the satisfiability problem of any logic to a synchronous mon-
itoring (i.e., violations are reported immediately) problem: given a formula ϕ, a
monitor should report violation on the empty trace iff ϕ is not satisfiable. Thus,
the fact that monitoring LTL is EXPSPACE-complete [14] comes at no surprise
(LTL satisfiability is PSPACE [15]). Since ALTL is NP-complete (Corollary 1),
any monitoring algorithm for ALTL is expected to be worst-case exponential in
practice. However, as in many other similar situations, this fact does not neces-
sarily mean that the problem of monitoring ALTL formulae is not practical. We
next briefly discuss an immediate monitoring algorithm for ALTL based on its
translation into LTL, and then give an algorithm specific to ALTL that avoids the
complexity of monitoring LTL and which seems quite efficient in practice. The
next section discusses an experiment where the ALTL formula is large enough
that the LTL-based monitoring algorithms for ALTL cannot handle it.

The transformation in Section 3 suggests using a general purpose monitoring
algorithm for LTL (e.g., the one in [2]), to monitor the LTL formula obtained
linearly from the ALTL formula. We have experimented with this technique and
have succeeded to generate, unfortunately huge, LTL monitors only for relatively
small ALTL formulae. For example, for the ALTL formula in Example 2, which is
a subformula of the ALTL formula in Example 1, the generated monitor had more
than 60,000 edges, while the algorithm ran out of memory trying to generate
an LTL monitor for the entire ALTL formula in Example 1; and that is just



a toy example. The reason for our failure to generate monitors following this
approach is the intermediate Buchi automata generator from LTL formulae; the
LTL monitors in [2] are obtained by pruning the corresponding Buchi automata,
which can be exponential in the size of the LTL formula. The interested reader is
encouraged to check Appendix A for more details on this unsuccessful approach.

We next give a monitoring algorithm for ALTL not based on general moni-
toring algorithms for LTL. The idea is to regard the ALTL formula ϕ as a boolean
proposition in which the interval relations are regarded as special variables. For
each interval relation we generate a little state machine, which has two special
states, true and false. These state machines are shown in Figure 2. We also add
a top-level conjunct consisting of precisely one special variable for each interval
that appears in ϕ; these latter variables correspond, intuitively, to the formulae
ψi in Definition 5. The monitoring algorithm works as follows:

(1) generate all the state machines in Figure 2 (left-top state is initial);
(2) let ξ be the boolean proposition obtained from ϕ as above;
(3) run a boolean satisfiability checker on ξ and halt with “error” if ξ is not

satisfiable;
(4) otherwise, for the next event t received from the monitored system, run all

the state machines one step according to t (take that deterministic edge
which is satisfied by t);

(5) modify the formula ξ by replacing each variable whose corresponding state
machine is in a state true or false by the corresponding truth value;

(5) goto step (3).

Let us briefly discuss the state machines. The ones for ψi ensure that intervals
are contiguous (convex); some intervals can be unbounded. The next seven state
machines correspond to the relations on intervals. Let us discuss the one for
Meets(i, j). One starts with the initial state �������	i, j (neither in i nor in j), and
there it stays as far as one does not enter any of the intervals. If while in this
state the monitored program enters the interval j, that is, if ∈j holds, then the
relation Meets(i, j) is obviously violated (interval i cannot be empty). Otherwise,
if the interval i but not j is entered, then the machine moves to state �������	i, j where
it waits until either i is left and j is entered in which case it returns true, or
otherwise until i is left without entering j or i and j overlap, when it returns
false. The machine for Holds(p, i) checks that p holds during the interval i.

Example 3. Let us consider again the monkey/banana formula in Example 2,

(Meets(Nhb, Gb) ∧ Meets(Gb, Hb) ∧ During(Gb,@(tree)) ∧ During(Gb, H)),

and consider an execution trace which starts with the abstract events t1 = {∈Nb
},

t2 = {∈Nb
,∈@(tree)}, t3 = {∈Gb

,∈@(tree),∈H}, t4 = {∈Hb
,∈H}, ..., where an

abstract event formed of a set of atomic propositions is an event in which all
those, and only those propositions hold. This execution trace corresponds to the
“flying monkey” scenario at the end of Example 1.
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Fig. 2. State machines are run synchronously by the monitor with each event.

Let us simulate the execution of the ALTL monitoring algorithm above on
this example. There are nine state machines like in Figure 2 necessary, four cor-
responding to each of the four interval relations and five corresponding to each
interval appearing in the formula. The boolean formula ξ is just a conjunction
of the corresponding nine variables. All one needs to do is to run the nine state
machines on the execution trace, update the boolean proposition and then check
for satisfiability after each event. After the first three events, the five ψi formulae
will be in some intermediate (not false) states, and the four machines corresond-
ing to the interval relations will be in the states true, (Gb, Hb), (@(tree), Gb),
and (Gb, H), respectively, so the formula is still satisfiable. However, when the
event t4 is processed, the machine corresponding to During(Gb,@(tree)), or to
Contains(@(tree), Gb), transits to false, invalidating the boolean proposition. �



Example 4. Consider now the ALTL formula ¬Before(i, j) and a two-event trace
{∈i}{}. The monitoring algorithm above sets the machine corresponding to
Before(i, j) to state �������	i, j after processing {∈i} and then to state true after pro-
cessing {}, causing the monitor to report “error” before any event containing ∈j

is seen. Note that {∈i}{} is indeed a bad prefix for ¬Before(i, j) (∈j must hold
eventually in any interval model of ALTL). Therefore, our monitoring algorithm
for ALTL detects bad prefixes as soon as they appear. �

Theorem 2. The monitoring algorithm for ALTL above is correct.

Proof. First, note that the state machines corresponding to ψi and “running”
at the top of the boolean proposition ξ will intercept any violation of the con-
vexity of intervals. If any of the convexities of intervals is violated, that is, if an
interval starts, then it is interrupted and then started again, then the monitor-
ing algorithm above returns “error”, because the observed trace cannot even be
continued into an interval model; one can easily modify the algorithm to return
a different type of error in such situations. Hence, from now on in the proof we
assume the well-formedness of intervals. Consider some finite trace τ = t1t2...tm
that is well-formed wrt intervals, i.e., it can be the prefix of some interval model
of ALTL. Let us first prove that for any interval relation, its corresponding state
machine is in state false after processing τ iff τ is a bad prefix of that interval
relation. We only show it for one relation, say Before(i, j); the others are similar.
Note that τ is a bad prefix of Before(i, j) iff τ contains (some event satisfying)
∈j before or at the same time with ∈i. Since the state machine of Before(i, j)
reaches the state false iff ∈j is seen before ∈j or if ∈j and ∈i are seen together
as part of an event, and since the machines corresponding to ψi ensure the con-
tiguity of intervals, we can conclude that τ is a bad prefix of Before(i, j) iff the
corresponding machine of Before(i, j) is in state false after processing τ .

Let us next prove that for any interval relation, the corresponding machine is
in state true after processing τ iff τ is a good prefix of that relation, in the sense
that for any infinite trace τ such that τπ is an interval model of ALTL, it is the
case that τπ satisfies that relation. As above, let us just prove it for Before(i, j).
Note that the machine of Before(i, j) can be in state true after processing τ iff
τ contains no event satisfying ∈j and contains some event satisfying ∈i followed
by one which does not satisfy ∈i. This is equivalent to saying that any interval
model of the form τπ (recall that intervals have non-empty interpretations in
interval models) satisfies Before(i, j).

Let us now consider any ALTL formula ϕ and a finite trace τ as above. If ϕ
has the form ϕ1 ∧ ϕ2 then τ is a bad (or good) prefix of ϕ iff it is a bad (or
good prefix) of ϕ1 or (and) ϕ2. If ϕ has the form ¬ϕ1 then τ is a bad (or good)
prefix of ϕ iff it is a good (or a bad) prefix of ϕ1. Therefore, in order to test
whether τ is a bad prefix of ϕ one only needs to know whether it is a bad prefix
of ϕ’s interval relations, that is, if their corresponding state machines are in their
corresponding false or true states after processing τ . The satisfiability checking
of ξ after each event ensures that violations are reported as early as possible. �

Corollary 2. The monitoring problem for ALTL is NP-complete.



If one is not interested in reporting ALTL property violations as early as
possible, then one can run the satisfiability checker less frequently, say once
every 100 evens, or even just once at the end of the monitoring session, and
thus significantly reduce the runtime overhead (which would amount to just
running the state machines in parallel at each received event). If minimal runtime
overhead is highly desirable, since the formula ξ to check for satisfiability changes
incrementally by irreversibly transforming some of its variables into true or false,
to achieve a minimal runtime overhead one can use an incremental SAT solver.

5 Experiment

Implementation. We have implemented a prototype monitor generation tool,
called ALTL2Monitor. It implements the monitoring algorithm presented in the
previous section using the SAT solver zChaff [11] for satisfiability checking.
Case Study. Our case study is a simplified version of an exploration rover
(Gromit, at Nasa Ames). The mission of the robot is to visit a number of way-
points, into an initially unknown rough environment, while monitoring interest-
ing targets on its path. The robot continuously takes pictures of the terrain in
front of it, performs a stereo correlation to extract cloud of 3D points, merges
these points in its model of environment and starts this process again. In paral-
lel, it continuously considers its currents position, the next waypoint to visit, the
obstacles in the model of the environment built and produces a trajectory. These
two interdependent cyclic processes are synchronized. Last, a third process in-
terrupts whenever an interesting rock has been detected. The functional layer of
Gromit is implemented using functional modules (for more details see [10]). For
each of them we shall consider the “visible” state variables of interest :
- Rflex is the module interfaced with the low-level speed controller. It has a
state variable for the position of the robot, with each token representing a specific
robot position, and another one for the speed passed to the wheels controller.
- Camera shots a pair of stereo calibrated images and saves them. It has one
state variable representing the camera status (taking picture, or idle).
- SCorrel produces and stores a stereo correlated image. It has a state variable
representing the Scorrel process (performing stereo correlation, or idle).
- Lane builds a model of the environment by aggregating clouds of 3D points
produced by Scorrel. It services two requests: read in an internal buffer and
fuse the read. Lane has one state variable for the model building process.
- P3D is a rover navigation software. It produces an arc trajectory which is
translated in a speed reference, to try to reach a waypoint. P3D has a variable
for its state (idle or computing the speed) and one for the waypoints to visit.
- Science. This module monitors a particular condition of interest to scientist
(such as detecting a rock with particular features). When such a condition arises
while the robot is moving toward a waypoint, it stops and takes a picture of the
rock. It has one state variable for its state (monitoring interesting rock or idle).

Figure 3 shows some temporal relations representing a simplified version of
the actual Gromit Rover.
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Fig. 3. Partial Gromit Model: Attributes and compatibilities

Results. Due to intellectual property restrictions, we did not have access to
the execution platform of the Gromit Rover. However, the CNRS Laboratory
LAAS (at Toulouse, France) provided1 us with a file formalizing some of the
compatibilities as an ATL formula of more than 100 interval relations, listed in
Appendix B, as well as with a set of one hundred traces generated by the Gromit
Rover execution platform. We applied our prototype ALTL2Monitor off-line to
check these traces; the checking took negligible time. However, the satisfiability
checker was applied only once at the end of the monitoring session of each trace,
because we expected the traces to be correct, which was indeed the case.

6 Conclusion

We presented Allen linear temporal logic (ALTL), an automated translation of
ALTL into LTL, a monitor synthesis algorithm for ALTL, as well as a real-life
experiment. While LTL can be a suitable logic for AI and planning, we also
believe that ALTL can be a suitable logic for certain program verification efforts.
Its simplicity and neutrality cannot be ignored, while at the same time tends to
be algorithmically more efficient than LTL; for example, the corresponding LTL-
formula to the ALTL formula in the experiment above would have hundreds of
nested temporal operators, with little or no hope to generate a Buchi automaton
for it. We plan to apply our ALTL monitoring prototype to the autonomous
embedded system iRobot ATRV of the LAAS Laboratory.
1 We warmly thank Felix Ingrand for help.
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A A Rewriting-based Translator from ALTL into LTL

In this appendix we encode the translation of ALTL formulae into LTL formulae
discussed in Section 3 using the Maude [4] rewrite engine. We start with a module
declaring a sort Proposition for atomic propositions. Technically speaking, we
could have just used the sort Formula (see next module) instead of Proposition,
but the definition would be harder to read:

fmod PROPOSITION is

sort Proposition .

endfm

The next module adds the sort Formula for formulae together the syntax for
the usual boolean operators:

fmod BASIC-FORMULA is

including PROPOSITION .

sort Formula .

subsort Proposition < Formula .

ops true false : -> Formula .

op _/\_ : Formula Formula -> Formula [assoc prec 20] .

op _\/_ : Formula Formula -> Formula [assoc prec 30] .

op _->_ : Formula Formula -> Formula [prec 40] .

op _<->_ : Formula Formula -> Formula [prec 40] .

op !_ : Formula -> Formula [prec 10] .

endfm

We next add syntax for the LTL� operators:

fmod LTL-BOX-SYNTAX is

including BASIC-FORMULA .

ops <>_ ‘[‘]_ : Formula -> Formula [prec 7] .

endfm

We next add the sort Interval for intervals:

fmod INTERVAL is

sort Interval .

endfm

Now we are ready to define the translator from ALTL into LTL. Recall that
Maude interprets all the equations into parametric rewrite rules, that is, they
are only applied from left to right when one launches its rewrite engine. We first
give reduction rules for all the derived interval relations:

fmod ALLEN-SYNTAX is

including BASIC-FORMULA .

including INTERVAL .

ops Equals Before After Overlaps Overlapped-by

Meets Met-by Contains During



Starts Started-by Ends Ended-by : Interval Interval -> Formula .

ops Holds Occurs : Proposition Interval -> Formula .

var P : Proposition . vars I J : Interval .

eq After(I,J) = Before(J,I) .

eq Met-by(I,J) = Meets(J,I) .

eq Overlapped-by(I,J) = Overlaps(J,I) .

eq During(I,J) = Contains(J,I) .

eq Started-by(I,J) = Starts(J,I) .

eq Ended-by(I,J) = Ends(J,I) .

endfm

To define the actual translation, we need all the intervals in a formula in
order to generate the LTL formulae ψi (see Section 3). To achieve that, we define
sets of intervals first:

fmod INTERVAL-SET is

including INTERVAL .

sort IntervalSet .

subsort Interval < IntervalSet .

op empty : -> IntervalSet .

op _,_ : IntervalSet IntervalSet -> IntervalSet [assoc comm id: empty] .

var I : Interval .

eq I,I = I .

endfm

Then we define a (boring) operation, intervalsOf, which accumulates all the
intervals appearing in a given ALTL formula in a corresponding set:

fmod INTERVALS-OF is

including ALLEN-SYNTAX .

including INTERVAL-SET .

op intervalsOf : Formula -> IntervalSet .

vars I J : Interval . vars F F’ : Formula . var P : Proposition .

eq intervalsOf(Equals(I,J)) = I,J .

eq intervalsOf(Before(I,J)) = I,J .

eq intervalsOf(Overlaps(I,J)) = I,J .

eq intervalsOf(Meets(I,J)) = I,J .

eq intervalsOf(Contains(I,J)) = I,J .

eq intervalsOf(Starts(I,J)) = I,J .

eq intervalsOf(Ends(I,J)) = I,J .

eq intervalsOf(Holds(P,I)) = I .

eq intervalsOf(Occurs(P,I)) = I .

eq intervalsOf(true) = empty .

eq intervalsOf(false) = empty .

eq intervalsOf(F /\ F’) = intervalsOf(F), intervalsOf(F’) .

eq intervalsOf(F \/ F’) = intervalsOf(F), intervalsOf(F’) .

eq intervalsOf(F -> F’) = intervalsOf(F), intervalsOf(F’) .

eq intervalsOf(! F) = intervalsOf(F) .

endfm



The following is now straightforward; it blindly implements the translation
rules in Section 3:

fmod ALLEN2LTL is

including LTL-BOX-SYNTAX .

including INTERVALS-OF .

op in : Interval -> Proposition .

op psi : IntervalSet -> Formula .

vars I J : Interval . var Is : IntervalSet .

eq psi(I) = <> in(I) /\ ! <>(in(I) /\ <>(! in(I) /\ <> in(I))) .

eq psi(I,J,Is) = psi(I) /\ psi(J,Is) .

ops ‘[_‘] ‘{_‘} : Formula -> Formula .

var P : Proposition . vars F F’ : Formula .

eq [Equals(I,J)] = [](in(I) <-> in(J)) .

eq [Before(I,J)] = <>(in(I) /\ <>(! in(I) /\ ! in(J) /\ <> in(J))) .

eq [Meets(I,J)]

= <>(in(I) /\ <> in(J) /\ ! <>(in(I) /\ in(J)) /\ ! <>(! in(I) /\ ! in(J) /\ <> in(J))) .

eq [Overlaps(I,J)]

= <>(in(I) /\ ! in(J) /\ <>(in(I) /\ in(J) /\ <>(! in(I) /\ in(J)))) .

eq [Contains(I,J)]

= <>(in(I) /\ ! in(J) /\ <>(in(I) /\ in(J) /\ <>(in(I) /\ ! in(J)))) .

eq [Starts(I,J)]

= [](in(I) -> in(J)) /\ ! <>(in(J) /\ ! in(I) /\ <> in(I)) /\ <>(in(J) /\ ! in(I)) .

eq [Ends(I,J)]

= [](in(I) -> in(J)) /\ <>(in(J) /\ ! in(I)) /\ ! <>(in(J) /\ in(I) /\ <>(in(J) /\ ! in(I))) .

eq [Holds(P,I)] = [](in(I) -> P) .

eq [Occurs(P,I)] = <>(in(I) /\ P) .

eq [true] = true .

eq [false] = false .

eq [F /\ F’] = [F] /\ [F’] .

eq [F \/ F’] = [F] \/ [F’] .

eq [! F] = ! [F] .

eq {F} = [F] /\ psi(intervalsOf(F)) .

endfm

The encoding is done. We can now try various examples, such as the one in
Example 1:

fmod TEST is

including ALLEN2LTL .

ops a b c d x y z : -> Proposition .

ops i j k : -> Interval .

op hungry : -> Proposition .

ops Nhb Gb Hb @tree H @x Gx2tree L C CD : -> Interval .

ops formula1 formula2 formula3 formula4 : -> Formula .

eq formula1 = Meets(Nhb,Gb) /\ Meets(Gb,Hb) /\ During(Gb,@tree) /\ During(Gb,H) .



eq formula2 = Meets(@x,Gx2tree) /\ Meets(Gx2tree,@tree) /\ During(Gx2tree,L) .

eq formula3 = Meets(L,C) /\ Meets(C,H) /\ Meets(H,CD) /\ Meets(CD,L) /\ During(C,@tree) .

eq formula4 = Occurs(hungry,Nhb) /\ Holds(hungry,Gb) /\ Holds(hungry,Hb) .

endfm

reduce {formula1 /\ formula2 /\ formula3 /\ formula4} .

Maude produces the following result:

bash$ maude allen2ltl.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.1.1 built: Jun 15 2004 12:55:31

Copyright 1997-2004 SRI International

Mon Jan 23 16:18:08 2006

==========================================

reduce in TEST : {formula1 /\ formula2 /\ formula3 /\ formula4} .

rewrites: 103 in 0ms cpu (0ms real) (~ rewrites/second)

result Formula: <> (in(Nhb) /\ <> in(Gb) /\ ! <> (in(Nhb) /\ in(Gb))

/\ ! <> (! in(Nhb) /\ ! in(Gb) /\ <> in(Gb))) /\ <> (in(Gb) /\

<> in(Hb) /\ ! <> (in(Gb) /\ in(Hb)) /\ ! <> (! in(Gb) /\ ! in(Hb) /\

<> in(Hb))) /\ <> (in(@tree) /\ ! in(Gb) /\ <> (in(@tree) /\ in(Gb) /\

<> (in(@tree) /\ ! in(Gb)))) /\ <> (in(H) /\ ! in(Gb) /\ <> (in(H) /\

in(Gb) /\ <> (in(H) /\ ! in(Gb)))) /\ <> (in(@x) /\ <> in(Gx2tree) /\

! <> (in(@x) /\ in(Gx2tree)) /\ ! <> (! in(@x) /\ ! in(Gx2tree) /\

<> in(Gx2tree))) /\ <> (in(Gx2tree) /\ <> in(@tree) /\ ! <> (in(Gx2tree)

/\ in(@tree)) /\ ! <> (! in(Gx2tree) /\ ! in(@tree) /\ <> in(@tree)))

/\ <> (in(L) /\ ! in(Gx2tree) /\ <> (in(L) /\ in(Gx2tree) /\ <> (in(L)

/\ ! in(Gx2tree)))) /\ <> (in(L) /\ <> in(C) /\ ! <> (in(L) /\ in(C))

/\ ! <> (! in(L) /\ ! in(C) /\ <> in(C))) /\ <> (in(C) /\ <> in(H) /\

! <> (in(C) /\ in(H)) /\ ! <> (! in(C) /\ ! in(H) /\ <> in(H))) /\

<> (in(H) /\ <> in(CD) /\ ! <> (in(H) /\ in(CD)) /\ ! <> (! in(H) /\

! in(CD) /\ <> in(CD))) /\ <> (in(CD) /\ <> in(L) /\ ! <> (in(CD) /\

in(L)) /\ ! <> (! in(CD) /\ ! in(L) /\ <> in(L))) /\ <> (in(@tree) /\

! in(C) /\ <> (in(@tree) /\ in(C) /\ <> (in(@tree) /\ ! in(C)))) /\

<> (in(Nhb) /\ hungry) /\ [](in(Gb) -> hungry) /\ [](in(Hb) -> hungry)

/\ <> in(Nhb) /\ ! <> (in(Nhb) /\ <> (! in(Nhb) /\ <> in(Nhb))) /\

<> in(Gb) /\ ! <> (in(Gb) /\ <> (! in(Gb) /\ <> in(Gb))) /\ <> in(Hb)

/\ ! <> (in(Hb) /\ <> (! in(Hb) /\ <> in(Hb))) /\ <> in(@tree) /\

! <> (in(@tree) /\ <> (! in(@tree) /\ <> in(@tree))) /\ <> in(H) /\

! <> (in(H) /\ <> (! in(H) /\ <> in(H))) /\ <> in(@x) /\

! <> (in(@x) /\ <> (! in(@x) /\ <> in(@x))) /\ <> in(Gx2tree) /\

! <> (in(Gx2tree) /\ <> (! in(Gx2tree) /\ <> in(Gx2tree))) /\ <> in(L)

/\ ! <> (in(L) /\ <> (! in(L) /\ <> in(L))) /\ <> in(C) /\ ! <> (in(C)

/\ <> (! in(C) /\ <> in(C))) /\ <> in(CD) /\ ! <> (in(CD) /\

<> (! in(CD) /\ <> in(CD)))

Maude>

We have unsuccessfully tried to generate a monitor from the LTL formula
above using the monitor generator in [2], which is based on a Buchi automata



generator for LTL formulae. The monitor generator in [2] uses the LTL2BA
procedure by Oddoux and Gastin in [12]. Unfortunately, the Buchi automaton
for the formula above seems to be prohibitively large. We iteratively reduced the
size of the LTL formula until LTL2BA succeeded to generate a monitor. More
precisely, when the LTL formula is the one corresponding to the ALTL subformula
formula1, that is, about 25% the size of the original formula, LTL2BA was able
to generate a Buchi automaton of several thousand states and more than 60,000
edges! This little experiment suggests that using blindly LTL monitor generators
to obtain monitors for ALTL may not be feasible in practice, especially because
relatively small ALTL formule can result in large corresponding LTL formulae.
Thus we decided to investigate possibilities to generate specialized monitors for
ALTL and eventually developed the algorithm in Section 4.

B The Compatibilities of the Case Study

The modeling language used for the case study is the Domain Description Lan-
guage (DDL) supported by the EUROPA planning technology [7], a direct de-
scendant of the Planner/Scheduler that was part of NASA’s Remote Agent [8].
DDL uses a LISP-based syntax. A DDL model is equivalent to defining a set of
parallel timelines (one per state variable), sets of procedure types that can ap-
pear on each timeline over which a procedure can extend, temporal constraints
between procedure intervals (the compatibilities), duration constraints and para-
metric constraints. An example of compatibilities definition in DDL extracted
from our case study, as well as its graphical interpretation and corresponding
ALTL formula, is shown in Figure 4. The rest of this appendix contains the en-

(Define-compatibility

((S-V Position)

(MOVE(?init-pos ?final-pos)))

:duration_bounds[8,10]

:compatibility_spec

(AND

(met-by (S-V Position (AT(?init-pos ))))

(meets (S-V Position (AT(?final-pos))))))

AT(?init−pos) MOVE(?init−pos,?final−pos) AT(?final−pos)

POSITION

Position−sv

MetBy(MOVE(?init-pos, ?final-pos),AT(?init-pos)) ∧
Meets(MOVE(?init-pos, ?final-pos),AT(?final-pos))

Fig. 4. An example of definition in DDL, graphical representation and ALTL-formula.

tire formal DDL specification of our case study, as it was provided by the CNRS
Laboratory LAAS from Toulouse, France.



;;; -*- Mode: Lisp -*-

;;; File:

;;; Date:

;;; CVS:

(Define_Constant *max_goal_idle_time* 40)

(Define_Constant *goal_cicle_step* 2)

;;; This model describes the necessary functionality for

;;; implementing IDEA on Gromit

;;; Objects

(Define_Object_Class Gromit_Class

:state_variables

(

(Controllable Start_Manip_SV)

(Controllable Camera_SV)

(Controllable CameraObs_SV)

(Controllable SCorrel_SV)

(Controllable STEO_SV)

(Controllable Localize_Goal_SV)

(Controllable Lane_SV)

(Controllable Map_Goal_SV)

(Controllable Away_SV)

(Controllable Platine_SV)

(Controllable Rflex_speed_cntl_SV)

(Controllable Photo_obj_goal_SV)

(Controllable Global_Goal_SV)

(Controllable Load_Goal_SV)

))

; Start_Manip_camera_req

(Define_Member_Values ((Gromit_Class Start_Manip_SV))

(Start_Manip_idle

Start_Manip_monitor

)

)

(Define_Member_Values ((Gromit_Class Camera_SV))

(Camera_idle

Camera_shot

)

)

(Define_Member_Values ((Gromit_Class SCorrel_SV))

(SCorrel_idle

SCorrel_scorrel

)

)

(Define_Member_Values ((Gromit_Class STEO_SV))

(STEO_idle

STEO_read

STEO_pos

)

)

(Define_Member_Values ((Gromit_Class Lane_SV))

(Lane_idle

Lane_read

Lane_fuse

)

)

(Define_Member_Values ((Gromit_Class Localize_Goal_SV))

(Localize_Goal_idle

Localize_Goal_localize

)

)

(Define_Member_Values ((Gromit_Class Map_Goal_SV))

(Map_Goal_idle

Map_Goal_map

)

)

(Define_Member_Values ((Gromit_Class Global_Goal_SV))

(Global_Goal_idle

Global_Goal_exec

Global_Goal_start

Global_Goal_end

)

)

(Define_Member_Values ((Gromit_Class Load_Goal_SV))

(Load_Goal_idle

Load_Goal_exec

)

)

;;; Camera SVs

(Define_Member_Values ((Gromit_Class Away_SV))

(

Away_buff

Away_idle

Away_pos

)

)

(Define_Member_Values ((Gromit_Class Platine_SV))

(Platine_idle

Platine_oriented

Platine_pos

Platine_back

)

)

(Define_Member_Values ((Gromit_Class CameraObs_SV))

(

CameraObs_idle

CameraObs_shot

CameraObs_shotted

)

)

(Define_Member_Values ((Gromit_Class Rflex_speed_cntl_SV))

(Rflex_speed_cntl_idle

Rflex_cntl

)

)

(Define_Member_Values ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_start

Photo_obj_goal_task

Photo_obj_goal_idle

Photo_obj_goal_end

)

)

;;; Constants

(Define_Constant *max-dist-obstacle* 2)

(Define_Constant *latency* 1)

;;; Label sets

(Define_Label_Set ReturnStatus (OK PB))

(Define_Label_Set Return_Status (OK Failed))

(Define_Label_Set Task (Localize Observe))

(Define_Label_Set RflexCommand (ON OFF))

(Define_Label_Set GlobalExecStatus (Single))

;;; First Medium Last

;;; Define Predicate

(Define_Predicate Start_Manip_idle

(

(Boolean xidle)

)

)

(Define_Predicate Start_Manip_monitor

(

(ReturnStatus status)

(Boolean statusFlag)

)

)

(Define_Predicate Camera_idle

(



(Integer shot_index)

(Integer next_shot_index)

)

)

(Define_Predicate Camera_shot

(

(Integer shot_index)

(ReturnStatus status)

(Boolean statusFlag)

)

)

(Define_Predicate SCorrel_idle

(

(Integer shot_index)

)

)

(Define_Predicate SCorrel_scorrel

(

(Integer shot_index)

(ReturnStatus status)

(Boolean statusFlag)

)

)

(Define_Predicate STEO_idle

)

(Define_Predicate STEO_read

(

(Integer shot_index)

(ReturnStatus status)

(Boolean statusFlag)

)

)

(Define_Predicate STEO_pos

(

(Integer shot_index)

(ReturnStatus status)

(Boolean statusFlag)

)

)

(Define_Predicate Lane_idle

)

(Define_Predicate Lane_read

(

(Integer shot_index)

(ReturnStatus status)

(Boolean statusFlag)

)

)

(Define_Predicate Lane_fuse

(

(Integer shot_index)

(ReturnStatus status)

(Boolean statusFlag)

)

)

(Define_Predicate Localize_Goal_idle

)

(Define_Predicate Localize_Goal_localize

(

(Integer localize_index)

)

)

(Define_Predicate Map_Goal_idle

)

(Define_Predicate Map_Goal_map

(

(Integer map_index)

)

)

(Define_Predicate Global_Goal_start

)

(Define_Predicate Global_Goal_exec

(

(Integer gen)

(Integer ngen)

(GlobalExecStatus first)

)

)

(Define_Predicate Global_Goal_end

(

(Integer gen)

)

)

;; (Define_Predicate Global_Goal_idle2

;; (

;; (Integer prevgen)

;; (Integer gen)

;; )

;;)

(Define_Predicate Global_Goal_idle

(

(Integer gen)

)

)

(Define_Predicate Load_Goal_idle

)

(Define_Predicate Load_Goal_exec

(

(Integer gen)

(Integer ngen)

(ReturnStatus status)

(Boolean statusFlag)

)

)

; Free future

;(Define_Predicate Free_future_idle

;)

;(Define_Predicate Free_future_stretch

;)

;(Define_Predicate Free_future_now

; (

; (Integer gen)

; (Integer ngen)

; (ReturnStatus status)

; (Boolean statusFlag)

; )

;)

;; Camera predicates

;;; Away Perdicates

(Define_Predicate Away_buff

(

(Real xbuf)

)

)

(Define_Predicate Away_idle

)

(Define_Predicate Away_pos

(

(Real xpos)

(Boolean xFlag)

(ReturnStatus status)

(Boolean statusFlag)

)

)

;;; Platine Predicates

(Define_Predicate Platine_pos

(

(Real ypos)

(ReturnStatus status)

(Boolean statusFlag)

)

)



(Define_Predicate Platine_idle

)

(Define_Predicate Platine_oriented

)

(Define_Predicate Platine_back

(

(ReturnStatus status)

(Boolean statusFlag)

)

)

;; Rflex_speed

(Define_Predicate Rflex_speed_cntl_idle

((RflexCommand rcntl)))

(Define_Predicate Rflex_cntl

(

(RflexCommand ycntl)

(ReturnStatus status)

(Boolean statusFlag)

)

)

;CameraObs

(Define_Predicate CameraObs_idle

)

(Define_Predicate CameraObs_shot

(

(ReturnStatus status)

(Boolean statusFlag)

)

)

(Define_Predicate CameraObs_shotted

)

; Goal predicates

(Define_Predicate Photo_obj_goal_task

)

(Define_Predicate Photo_obj_goal_idle

)

(Define_Predicate Photo_obj_goal_end

)

(Define_Predicate Photo_obj_goal_start

)

;;; Main constraints to enforce on the overall system

;;; post both Localize and Map goals.

(Define_Compatibility (SINGLE ((Gromit_Class Start_Manip_SV))

((Start_Manip_idle(?xidle))))

:duration_bounds [*latency* _plus_infinity_]

)

(Define_Compatibility (SINGLE ((Gromit_Class Start_Manip_SV))

((Start_Manip_idle(?xidle))))

:compatibility_spec

(?xidle

OR

(True

AND

(meets

(SINGLE ((Gromit_Class Start_Manip_SV))

((Start_Manip_monitor (?_any_value_)))))))

)

(Define_Compatibility (SINGLE ((Gromit_Class Start_Manip_SV))

((Start_Manip_monitor (OK True))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Start_Manip_SV))

((Start_Manip_idle(?_any_value_))))))

)

(Define_Compatibility (SINGLE ((Gromit_Class Start_Manip_SV))

((Start_Manip_monitor (OK True))))

:compatibility_spec

(AND

(before [5 400]

(SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_end (2)))))

(meets

(SINGLE ((Gromit_Class Away_SV))

((Away_pos (?_any_value_)))))

)

)

;;; Localize

(Define_Compatibility (SINGLE ((Gromit_Class Localize_Goal_SV))

((Localize_Goal_localize (?generation))))

:duration_bounds [*latency* _plus_infinity_]

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Localize_Goal_SV))

(Localize_Goal_idle)))

(met_by

(SINGLE ((Gromit_Class STEO_SV))

((STEO_pos (?generation OK True)))))

(meets

(SINGLE ((Gromit_Class Localize_Goal_SV))

(Localize_Goal_idle)))

))

(Define_Compatibility (SINGLE ((Gromit_Class Localize_Goal_SV))

(Localize_Goal_idle))

:duration_bounds [*latency* _plus_infinity_]

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Localize_Goal_SV))

((Localize_Goal_localize (?_any_value_)))))

)

)

(Define_Compatibility (SINGLE ((Gromit_Class STEO_SV))

((STEO_pos (?generation ?status ?statusFlag))))

:duration_bounds [*latency* 6]

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class STEO_SV))

((STEO_read (?generation OK True)))))

))

(Define_Compatibility (SINGLE ((Gromit_Class STEO_SV))

((STEO_pos (?generation OK True))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class STEO_SV))

(STEO_idle)))

(meets

(SINGLE ((Gromit_Class Localize_Goal_SV))

((Localize_Goal_localize (?generation)))))

))

;(Define_Compatibility (SINGLE ((Gromit_Class STEO_SV))

; ((STEO_read (?gen_loc ?status ?statusFlag))))

; :duration_bounds [*latency* 3]

; :compatibility_spec

; (AND

; (met_by

; (SINGLE ((Gromit_Class SCorrel_SV))

; ((SCorrel_scorrel (?gen_loc OK True))))

; ))

;)

;;; Map

(Define_Compatibility (SINGLE ((Gromit_Class Map_Goal_SV))

((Map_Goal_map (?generation))))

:duration_bounds [*latency* _plus_infinity_]

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Map_Goal_SV))

(Map_Goal_idle)))

(met_by

(SINGLE ((Gromit_Class Lane_SV))

((Lane_fuse (?generation OK True)))))

(meets

(SINGLE ((Gromit_Class Map_Goal_SV))

(Map_Goal_idle)))

))



(Define_Compatibility (SINGLE ((Gromit_Class Map_Goal_SV))

(Map_Goal_idle))

:duration_bounds [*latency* _plus_infinity_]

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Map_Goal_SV))

((Map_Goal_map (?_any_value_)))))

)

)

(Define_Compatibility (SINGLE ((Gromit_Class Lane_SV))

((Lane_fuse (?generation ?status ?statusFlag))))

:duration_bounds [*latency* 5]

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Lane_SV))

((Lane_read (?generation OK True)))))

))

(Define_Compatibility (SINGLE ((Gromit_Class Lane_SV))

((Lane_fuse (?generation OK True))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Lane_SV))

(Lane_idle)))

(meets

(SINGLE ((Gromit_Class Map_Goal_SV))

((Map_Goal_map (?generation)))))

))

;(Define_Compatibility (SINGLE ((Gromit_Class Lane_SV))

; ((Lane_read (?gen_loc ?status ?statusFlag))))

; :duration_bounds [*latency* 3]

; :compatibility_spec

; (AND

; (met_by

; (SINGLE ((Gromit_Class SCorrel_SV))

; ((SCorrel_scorrel (?gen_loc OK True))))

; ))

;)

;;; shot_index > gen_loc

(Define_Compatibility (SINGLE ((Gromit_Class SCorrel_SV))

((SCorrel_scorrel (?shot_index ?status ?statusFlag))))

:duration_bounds [*latency* 7]

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Camera_SV))

((Camera_shot (?shot_index OK True))))))

)

;;; Camera_SV

;;;

;;; Loop: Idle, Shot

;;; Shot when the poster is unused

;;;

;;; Camera_idle

(Define_Compatibility (SINGLE ((Gromit_Class Camera_SV))

((Camera_idle (?prev ?shot_index))))

:duration_bounds [*latency* _plus_infinity_]

)

(Define_Compatibility (SINGLE ((Gromit_Class Camera_SV))

((Camera_idle (?prevgen ?shot_index))))

:parameter_functions

((addeq(1 ?prevgen ?shot_index)))

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Camera_SV))

((Camera_shot (?prevgen ?_any_value_ ?_any_value_)))))

))

;;; Camera_shot

(Define_Compatibility (SINGLE ((Gromit_Class Camera_SV))

((Camera_shot (?shot_index ?status ?statusFlag))))

:duration_bounds [*latency* 3]

)

(Define_Compatibility (SINGLE ((Gromit_Class Camera_SV))

((Camera_shot (?shot_index ?status ?statusFlag))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Camera_SV))

((Camera_idle (?shot_index ?_any_value_)))))

(met_by

(SINGLE ((Gromit_Class Camera_SV))

((Camera_idle (?_any_value_ ?shot_index)))))

(contained_by

(SINGLE ((Gromit_Class CameraObs_SV))

(CameraObs_idle)))

(equal

(SINGLE ((Gromit_Class Load_Goal_SV))

((Load_Goal_exec(?shot_index ?_any_value_)))))

)

)

;;; Scorrel

;;;

;;; Loop: Idle, Scorrel

;;; SCorrel meets Camera_Shot

;;; SCorrel contained-by Camera_Idle

;;; SCorrel_idle

(Define_Compatibility (SINGLE ((Gromit_Class SCorrel_SV))

((SCorrel_idle(?shot_index))))

:duration_bounds [*latency* _plus_infinity_]

)

(Define_Compatibility (SINGLE ((Gromit_Class SCorrel_SV))

((SCorrel_idle(?shot_index))))

:compatibility_spec

(AND

; (meets

; (SINGLE ((Gromit_Class SCorrel_SV))

; ((SCorrel_scorrel (?_any_value_)))))

(met_by

(SINGLE ((Gromit_Class SCorrel_SV))

((SCorrel_scorrel (?shot_index OK True)))))

))

;;; Scorrel_scorrel

(Define_Compatibility (SINGLE ((Gromit_Class SCorrel_SV))

((SCorrel_scorrel (?shot_index ?status ?statusFlag))))

:compatibility_spec

(AND

(contained_by

(SINGLE ((Gromit_Class Camera_SV))

((Camera_idle (?_any_value_)))))

(contained_by

(SINGLE ((Gromit_Class CameraObs_SV))

(CameraObs_idle )))

(meets

(SINGLE ((Gromit_Class SCorrel_SV))

((SCorrel_idle (?shot_index)))))

(met_by

(SINGLE ((Gromit_Class SCorrel_SV))

((SCorrel_idle(?_any_value_)))))

))

;;;; STEO

;;;;

;;;; loop: Idle, Read, Pos

;;;; Read meets SCorrel

;;;; Read contained-by STEO_Idle

;;;; Pos meets Read

;;; STEO_idle

(Define_Compatibility (SINGLE ((Gromit_Class STEO_SV))

(STEO_idle))

:duration_bounds [*latency* _plus_infinity_]

)

(Define_Compatibility (SINGLE ((Gromit_Class STEO_SV))

(STEO_idle))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class STEO_SV))

((STEO_read (?_any_value_))))))

)

;;; STEO_read



(Define_Compatibility (SINGLE ((Gromit_Class STEO_SV))

((STEO_read (?shot_index ?status ?statusFlag))))

:duration_bounds [*latency* 3]

)

(Define_Compatibility (SINGLE ((Gromit_Class STEO_SV))

((STEO_read (?shot_index ?status ?statusFlag))))

:compatibility_spec

(AND

(contained_by

(SINGLE ((Gromit_Class Camera_SV))

((Camera_idle (?shot_index ?_any_value_)))))

(contained_by

(SINGLE ((Gromit_Class CameraObs_SV))

(CameraObs_idle)))

(contained_by

(SINGLE ((Gromit_Class SCorrel_SV))

((SCorrel_idle(?shot_index))))))

)

(Define_Compatibility (SINGLE ((Gromit_Class STEO_SV))

((STEO_read (?shot_index OK True))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class STEO_SV))

((STEO_pos (?shot_index)))))

)

)

;;; STEO_pos

;(Define_Compatibility (SINGLE ((Gromit_Class STEO_SV))

; ((STEO_pos (?status ?statusFlag ?scorrel_state))))

; :duration_bounds [*latency* 8]

; )

;;;; Lane

;;;;

;;;; loop: Idle, Read, Fuse

;;;; Read meets SCorrel

;;;; Read contained-by SCorrel_Idle

;;;; Pos meets Read

;;; Lane_idle

(Define_Compatibility (SINGLE ((Gromit_Class Lane_SV))

(Lane_idle))

:duration_bounds [*latency* _plus_infinity_]

)

(Define_Compatibility (SINGLE ((Gromit_Class Lane_SV))

(Lane_idle))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Lane_SV))

((Lane_read (?_any_value_))))))

)

;;; Lane_read

(Define_Compatibility (SINGLE ((Gromit_Class Lane_SV))

((Lane_read (?shot_index ?status ?statusFlag))))

:duration_bounds [*latency* 3]

)

(Define_Compatibility (SINGLE ((Gromit_Class Lane_SV))

((Lane_read (?shot_index OK True))))

:compatibility_spec

(AND

(contained_by

(SINGLE ((Gromit_Class SCorrel_SV))

((SCorrel_idle(?shot_index)))))

(meets

(SINGLE ((Gromit_Class Lane_SV))

((Lane_fuse(?_any_value_)))))

))

;;; Lane_fuse

(Define_Compatibility (SINGLE ((Gromit_Class Lane_SV))

((Lane_fuse (?shot_index ?status ?statusFlag))))

:duration_bounds [*latency* 5]

)

;; (Define_Compatibility (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_exec (?gen ?ngen ?first))))

;; :duration_bounds [*latency* _plus_infinity_]

;; :parameter_functions

;; ((addeq (1 ?gen ?ngen)))

;; :compatibility_spec

;; (?first

;; OR

;; (Single

;; AND

;; (met_by

;; (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_idle (?gen)))))

;; (meets

;; (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_end (?ngen)))))

;; )

;; (First

;; AND

;; (met_by

;; (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_idle (?gen)))))

;; (meets

;; (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_exec (?ngen ?_any_value_)))))

;; )

;; (Medium

;; AND

;; (met_by

;; (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_exec (?_any_value_ ?gen ?_any_value_)))))

;; (meets

;; (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_exec (?ngen ?_any_value_ ?_any_value_)))))

;; )

;; (Last

;; AND

;; (met_by

;; (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_exec (?_any_value_ ?gen ?_any_value_)))))

;; (meets

;; (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_end (?ngen)))))

;; ; (meets

;; ; (SINGLE ((Gromit_Class Free_future_SV))

;; ; ((Free_future_now (?ngen ?_any_value_)))))

;; )

;; ))

(Define_Compatibility (SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_exec (?gen ?ngen ?first))))

:duration_bounds [*latency* _plus_infinity_]

:parameter_functions

((addeq (1 ?gen ?ngen)))

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_idle (?gen)))))

(meets

(SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_end (?ngen)))))

)

)

(Define_Compatibility (SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_exec (?gen ?ngen ?first))))

:duration_bounds [*latency* _plus_infinity_]

:compatibility_spec

(AND

(ends_after [0 0]

(SINGLE ((Gromit_Class Localize_Goal_SV))

((Localize_Goal_localize (?gen)))))

(ends_after [0 0]

(SINGLE ((Gromit_Class Map_Goal_SV))

((Map_Goal_map (?gen)))))

)

)

(Define_Compatibility (SINGLE ((Gromit_Class Global_Goal_SV))

(Global_Goal_start))

:duration_bounds [2 2]

)

(Define_Compatibility (SINGLE ((Gromit_Class Global_Goal_SV))

(Global_Goal_start))

:compatibility_spec

(AND

(meets



(SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_idle (1)))))

)

)

;; Global_Goal_end visible at deliberative time only

(Define_Compatibility (SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_end (?gen))))

:duration_bounds [*latency* _plus_infinity_]

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_exec (?_any_value_ ?gen ?_any_value_)))))

(meets

(SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_idle (?gen)))))

;(contains

; (SINGLE ((Gromit_Class Free_future_SV))

; (Free_future_stretch)))

))

;; (Define_Compatibility (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_idle2 (?gen ?ngen))))

;; :duration_bounds [*latency* _plus_infinity_]

;; :parameter_functions

;; ((addeq(1 ?gen ?ngen)))

;; :compatibility_spec

;; (AND

;; (meets (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_exec (?ngen False)))))

;; (met_by

;; (SINGLE ((Gromit_Class Global_Goal_SV))

;; ((Global_Goal_exec (?gen ?_any_value_)))))

;; )

;; )

(Define_Compatibility

(SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_idle (?gen))))

:duration_bounds [*latency* _plus_infinity_]

; :parameter_functions

; ((addeq(*max_h_planning_time* ?_start_time_ ?start_horizon))

; (addeq(4 ?start_horizon ?token_end))

; (eq(?_end_time_ ?token_end)))

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_end (?gen)))))

; (meets

; (SINGLE ((Gromit_Class Global_Goal_SV))

; ((Global_Goal_exec (?gen ?_any_value_ First)))))

;(contains [0 0] [0 0]

; (SINGLE ((Agent_Class Planner_SV))

; ((Planning (?start_horizon *end_of_day* PLAN_TO_STANDBY)))))

; (contained_by

; (SINGLE ((Gromit_Class SCorrel_SV))

; (SCorrel_idle)))

; (contained_by

; (SINGLE ((Gromit_Class Camera_SV))

; ((Camera_idle (?_any_value_)))))

; (contained_by

; (SINGLE ((Gromit_Class Map_Goal_SV))

; (Map_Goal_idle)))

; (contained_by

; (SINGLE ((Gromit_Class Localize_Goal_SV))

; (Localize_Goal_idle)))

; (contained_by

; (SINGLE ((Gromit_Class STEO_SV))

; (STEO_idle)))

; (contained_by

; (SINGLE ((Gromit_Class Lane_SV))

; (Lane_idle)))

;(contained_by

; (SINGLE ((Gromit_Class Free_future_SV))

; (Free_future_idle)))

)

)

;; Goal-loader

(Define_Compatibility

(SINGLE ((Gromit_Class Load_Goal_SV))

((Load_Goal_exec (?gen ?ngen ?status ?statusFlag))))

:duration_bounds [*latency* _plus_infinity_]

:parameter_functions

((addeq(*goal_cicle_step* ?gen ?ngen)))

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Load_Goal_SV))

(Load_Goal_idle)))

(meets

(SINGLE ((Gromit_Class Load_Goal_SV))

(Load_Goal_idle )))

(equal

(SINGLE ((Gromit_Class Camera_SV))

((Camera_shot(?gen ?_any_value_) ))))

; (starts_after [0 0]

; (SINGLE ((Gromit_Class Camera_SV))

; ((Camera_shot(?_any_value_) ))))

)

)

; The load goal token is forced to fail, and a new

; cicle can start

(Define_Compatibility (SINGLE ((Gromit_Class Load_Goal_SV))

((Load_Goal_exec (?gen ?ngen ?status False))))

; :duration_bounds [*latency* *latency*]

:parameter_functions

((addeq(*goal_cicle_step* ?gen ?ngen)))

:compatibility_spec

(AND

; (before [*latency* *latency*]

; (SINGLE ((Gromit_Class Global_Goal_SV))

; ((Global_Goal_idle (?_any_value_) ))))

(before [5 400]

(SINGLE ((Gromit_Class Global_Goal_SV))

((Global_Goal_end (?ngen) ))))

)

)

(Define_Compatibility

(SINGLE ((Gromit_Class Load_Goal_SV))

(Load_Goal_idle))

:duration_bounds [*latency* _plus_infinity_]

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Load_Goal_SV))

((Load_Goal_exec (?_any_value_)))))

)

)

;;; Free the future ;;;; Free the future

;(Define_Compatibility (SINGLE ((Gromit_Class Free_future_SV))

; (Free_future_idle))

; :duration_bounds [*latency* _plus_infinity_]

; :compatibility_spec

; (AND

; (meets

; (SINGLE ((Gromit_Class Free_future_SV))

; ((Free_future_now (?_any_value_)))))

; (met_by

; (SINGLE ((Gromit_Class Free_future_SV))

; (Free_future_stretch)))

; )

;)

;(Define_Compatibility (SINGLE ((Gromit_Class Free_future_SV))

; (Free_future_stretch))

; :duration_bounds [*latency* _plus_infinity_]

; :compatibility_spec

; (AND

; (met_by

; (SINGLE ((Gromit_Class Free_future_SV))

; ((Free_future_now (?_any_value_)))))

; (meets

; (SINGLE ((Gromit_Class Free_future_SV))

; (Free_future_idle)))

; )

;)

;(Define_Compatibility (SINGLE ((Gromit_Class Free_future_SV))

; ((Free_future_now (?gen ?ngen ?status ?statusFlag))))

; :duration_bounds [*latency* *latency*]

; :parameter_functions

; ((addeq(2 ?gen ?ngen)))

; :compatibility_spec

; (AND

; (meets

; (SINGLE ((Gromit_Class Free_future_SV))

; (Free_future_stretch)))



; (met_by

; (SINGLE ((Gromit_Class Free_future_SV))

; (Free_future_idle)))

; ; (contained_by

; ; (SINGLE ((Gromit_Class Global_Goal_SV))

; ; ((Global_Goal_exec(?_any_value_ ?_any_value_ Last)))))

; )

;)

; The free future token is forced to fail, the future is erased and a new

; cicle can start

;(Define_Compatibility (SINGLE ((Gromit_Class Free_future_SV))

; ((Free_future_now (?gen ?ngen ?status False))))

; :duration_bounds [*latency* *latency*]

; :parameter_functions

; ((addeq(*goal_cicle_step* ?gen ?ngen)))

; :compatibility_spec

; (AND

; (before [*latency* *latency*]

; (SINGLE ((Gromit_Class Global_Goal_SV))

; ((Global_Goal_idle (?_any_value_) ))))

; (before [40 200]

; (SINGLE ((Gromit_Class Global_Goal_SV))

; ((Global_Goal_end (?ngen) ))))

; )

;)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;; AWAY_SV

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;; Away_monitor

;(Define_Compatibility (SINGLE ((Gromit_Class Away_SV))

; (Away_monitor ))

; :duration_bounds [*latency* 4]

;)

;;meets Away_pos

;(Define_Compatibility (SINGLE ((Gromit_Class Away_SV))

; (Away_monitor ))

; :compatibility_spec

; (AND

; (meets

; (SINGLE ((Gromit_Class Away_SV))

; ((Away_pos(?_any_value_) ))))

; (meets

; (SINGLE ((Gromit_Class Photo_obj_goal_SV))

; (Photo_obj_goal_task)))

; ))

;;;;;;;;;;;;;; Away_pos

(Define_Compatibility (SINGLE ((Gromit_Class Away_SV))

((Away_pos (?xpos ?xFlag ?status ?statusFlag))))

:duration_bounds [*latency* _plus_infinity_]

)

;;;meets Away_buff

(Define_Compatibility (SINGLE ((Gromit_Class Away_SV))

((Away_pos (?xpos ?xFlag OK True))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Away_SV))

((Away_buff (?xpos))))))

)

;;;meets Rflex_speed_cntl

(Define_Compatibility (SINGLE ((Gromit_Class Away_SV))

((Away_pos (?xpos ?xFlag OK True))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_cntl (OFF ?_any_value_))))))

)

;;;;;;;;;;;;;;;;;;;;;; Away_buff

(Define_Compatibility (SINGLE ((Gromit_Class Away_SV))

((Away_buff (?xbuf))))

:duration_bounds [*latency* _plus_infinity_]

)

;;;meets platine_pos

(Define_Compatibility (SINGLE ((Gromit_Class Away_SV))

((Away_buff (?xbuf))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Platine_SV))

((Platine_pos (?xbuf ?_any_value_)))))

(met_by

(SINGLE ((Gromit_Class Away_SV))

((Away_pos (?xbuf True OK True)))))

(ends_during ;to be modified

(SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_speed_cntl_idle (OFF)))))

)

)

;;;meets away idle

(Define_Compatibility (SINGLE ((Gromit_Class Away_SV))

((Away_buff (?xbuf))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Away_SV))

(Away_idle )))

(meets

(SINGLE ((Gromit_Class Platine_SV))

((Platine_pos(?xbuf ?_any_value_) ))))

)

)

;;;;;;;;;;;;;;;;;;;;;; Away_idle

(Define_Compatibility (SINGLE ((Gromit_Class Away_SV))

(Away_idle))

:duration_bounds [*latency* _plus_infinity_]

)

;;meets Away_pos

(Define_Compatibility (SINGLE ((Gromit_Class Away_SV))

(Away_idle))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Away_SV))

((Away_pos (?_any_value_))))))

)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Rflex_speed_cntl_SV

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;; Rflex_cntl

(Define_Compatibility (SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

(( Rflex_cntl(?ycntl ?status ?statusFlag) )))

:duration_bounds [*latency* 4]

)

;;;meets Away_pos if ON and camera shot localize

(Define_Compatibility (SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_cntl(?ycntl ?status ?statusFlag))))

:compatibility_spec

(?ycntl

OR

(ON

AND

(meets

(SINGLE ((Gromit_Class Away_SV))

((Away_pos(?_any_value_) ) )) )

(met_by

(SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_speed_cntl_idle (OFF)))) )

(met_by

(SINGLE ((Gromit_Class Platine_SV))

((Platine_back (OK True)))) )

; (ends_before [0 0]

; (SINGLE ((Gromit_Class CameraObs_SV))

; (CameraObs_shotted )))

)

(OFF

AND

(met_by

(SINGLE ((Gromit_Class Away_SV))

((Away_pos (?_any_value_ True OK True)))) )

(met_by

(SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_speed_cntl_idle (ON)))) )

(before [0 400] ;added for deliberative version (to be removed for reactive version)

(SINGLE ((Gromit_Class Platine_SV))

((Platine_pos (?_any_value_)))) )

)

)

)

;;;meets idle



(Define_Compatibility (SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_cntl(?ycntl OK True))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_speed_cntl_idle (?ycntl)))))

)

)

;;;

;;;;;;;;;;;;;;;Rflex_speed_cntl_idle

(Define_Compatibility (SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_speed_cntl_idle (?rcntl))))

:duration_bounds [*latency* _plus_infinity_]

)

(Define_Compatibility

(SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_speed_cntl_idle (?rcntl))))

:compatibility_spec

(AND

(meets (SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_cntl (?_any_value_)))) )

(met_by (SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_cntl (?rcntl)))) )

)

)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Platine_SV

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;; Platine_Idle

(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

(Platine_idle))

:duration_bounds [*latency* _plus_infinity_]

)

(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

(Platine_idle ))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Platine_SV))

((Platine_pos(?_any_value_))))) )

)

;;; Platine_oriented

(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

(Platine_oriented))

:duration_bounds [*latency* _plus_infinity_]

)

;;; Platine_oriented

(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

(Platine_oriented ))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Platine_SV))

((Platine_back(?_any_value_)))))

;(met_by ;PROBLEMA

;(SINGLE ((Gromit_Class Platine_SV))

; ((Platine_pos(?_any_value_)))))

)

)

;;;;;;;;;; Platine_Pos

(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

((Platine_pos (?ypos ?status ?statusFlag))))

:duration_bounds [*latency* 10]

)

;;;;;meets platine_oriented

(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

((Platine_pos (?ypos OK True))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Platine_SV))

(Platine_oriented)))

(contained_by

(SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_speed_cntl_idle(OFF)))))

(contained_by ;overconstraint

(SINGLE ((Gromit_Class SCorrel_SV))

((SCorrel_idle(?_any_value_)))))

(contained_by ;overconstraint

(SINGLE ((Gromit_Class STEO_SV))

(STEO_idle)))

(contained_by

(SINGLE ((Gromit_Class Camera_SV))

((Camera_idle(?_any_value_)))))

)

)

(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

((Platine_pos (?ypos ?status ?statusFlag))))

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class Away_SV))

((Away_buff(?ypos))))) )

)

;;;;; meets Camera_shot

(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

((Platine_pos (?ypos OK True))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class CameraObs_SV))

((CameraObs_shot (?_any_value_))))))

)

;;; Platine_back

(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

((Platine_back(?status ?statusFlag))))

:duration_bounds [*latency* 10]

)

;;;;;meets idle

(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

((Platine_back (OK True))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Platine_SV))

(Platine_idle)))

(meets

(SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_cntl (ON ?_any_value_)))))

(met_by

(SINGLE ((Gromit_Class CameraObs_SV))

((CameraObs_shot (OK True)))))

)

)

;;;;; met_by Away_buff

;(Define_Compatibility (SINGLE ((Gromit_Class Platine_SV))

; ((Platine_pos (?ypos OK True))))

; :compatibility_spec

; (AND

; (met_by

; (SINGLE ((Gromit_Class Away_SV))

; ((Away_buff (?ypos))))))

;)

;;;;; Photo_Obj_Goal_SV

;(Define_Compatibility (SINGLE ((Gromit_Class Photo_obj_goal_SV))

; (Photo_obj_goal_task))

; :duration_bounds [*latency* 43000]

;)

(Define_Compatibility (SINGLE ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_task))

:duration_bounds [*latency* _plus_infinity_]

;:parameter_functions

;;((addeq(?_end_time_ *eod_buffer* *end_of_day*)))

;;((?_end_time_ <- Calculate_End_Time (?_start_time ?eod_buffer ?eod)))

;((leq(?_end_time_ *max_goal_task_time*)))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_end)))

(ends_before [0 0]

(SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_cntl (ON OK True)))))

;(starts_during [-4 4] [4 _plus_infinity_]

; (SINGLE ((Agent_Class Planner_SV))

; (Planner_Idle)))

)



)

(Define_Compatibility (SINGLE ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_end))

:duration_bounds [*latency* _plus_infinity_]

)

(Define_Compatibility (SINGLE ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_end))

:compatibility_spec

(AND

;(meets

; (SINGLE ((Gromit_Class Photo_obj_goal_SV))

; (Photo_obj_goal_idle)))

(met_by

(SINGLE ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_task)))

)

)

(Define_Compatibility (SINGLE ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_start))

:duration_bounds [8 _plus_infinity_]

)

(Define_Compatibility (SINGLE ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_start))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_idle)))

;(met_by

; (SINGLE ((Gromit_Class Photo_obj_goal_SV))

; (Photo_obj_goal_task)))

)

)

;(Define_Compatibility (SINGLE ((Gromit_Class Photo_obj_goal_SV))

; ((Photo_obj_goal_idle (?start_horizon ?token_end) )))

; :duration_bounds [32 _plus_infinity_]

;)

(Define_Compatibility

(SINGLE ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_idle ))

:duration_bounds [*latency* _plus_infinity_]

;:parameter_functions

;((addeq(*max_h_planning_time* ?_start_time_ ?start_horizon))

; (addeq(4 ?start_horizon ?token_end))

; (eq(?_end_time_ ?token_end)))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class Photo_obj_goal_SV))

(Photo_obj_goal_task)))

)

)

;;;;;;; CameraObs_SV

;;; CameraObs_shot

(Define_Compatibility (SINGLE ((Gromit_Class CameraObs_SV))

((CameraObs_shot (?status ?statusFlag))))

:duration_bounds [*latency* 3]

)

(Define_Compatibility (SINGLE ((Gromit_Class CameraObs_SV))

((CameraObs_shot (?status ?statusFlag))))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class CameraObs_SV))

(CameraObs_shotted )))

(met_by

(SINGLE ((Gromit_Class CameraObs_SV))

(CameraObs_idle )))

(contained_by

(SINGLE ((Gromit_Class Platine_SV))

(Platine_oriented)))

(meets

(SINGLE ((Gromit_Class Platine_SV))

((Platine_back (?_any_value_)))))

(contained_by

(SINGLE ((Gromit_Class Camera_SV))

((Camera_idle (?_any_value_)))))

)

)

;;; Camera_idle

(Define_Compatibility (SINGLE ((Gromit_Class CameraObs_SV))

(CameraObs_idle ))

:duration_bounds [*latency* _plus_infinity_]

)

(Define_Compatibility (SINGLE ((Gromit_Class CameraObs_SV))

(CameraObs_idle ))

:compatibility_spec

(AND

(meets

(SINGLE ((Gromit_Class CameraObs_SV))

((CameraObs_shot (?_any_value_)))))

)

)

;;; Camera_shotted

(Define_Compatibility (SINGLE ((Gromit_Class CameraObs_SV))

(CameraObs_shotted ))

:duration_bounds [*latency* _plus_infinity_]

)

;meets idle

(Define_Compatibility (SINGLE ((Gromit_Class CameraObs_SV))

(CameraObs_shotted ))

:compatibility_spec

(AND

(met_by

(SINGLE ((Gromit_Class CameraObs_SV))

((CameraObs_shot (?_any_value_)) )) )

(meets

(SINGLE ((Gromit_Class CameraObs_SV))

(CameraObs_idle )) )

(ends_before [0 0]

(SINGLE ((Gromit_Class Rflex_speed_cntl_SV))

((Rflex_cntl(ON OK True))) )

)

)

)

;EOF


