9 research outputs found

    Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene

    Get PDF
    Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5 mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid

    Metabolic engineering of Rhizopus oryzae for the production of platform chemicals

    Get PDF
    Rhizopus oryzae is a filamentous fungus belonging to the Zygomycetes. It is among others known for its ability to produce the sustainable platform chemicals l-(+)-lactic acid, fumaric acid, and ethanol. During glycolysis, all fermentable carbon sources are metabolized to pyruvate and subsequently distributed over the pathways leading to the formation of these products. These platform chemicals are produced in high yields on a wide range of carbon sources. The yields are in excess of 85 % of the theoretical yield for l-(+)-lactic acid and ethanol and over 65 % for fumaric acid. The study and optimization of the metabolic pathways involved in the production of these compounds requires well-developed metabolic engineering tools and knowledge of the genetic makeup of this organism. This review focuses on the current metabolic engineering techniques available for R. oryzae and their application on the metabolic pathways of the main fermentation products

    Deep Seated Density Anomalies Across the Iberia-Africa Plate Boundary and Its Topographic Response

    Get PDF
    The modes in which the lithosphere deforms during continental collision and the mechanisms involved are not well understood. While continental subduction and mantle delamination are often invoked in tectonophysical studies, these processes are difficult to be confirmed in more complex tectonic regions such as the Gibraltar Arc. We study the present-day density and compositional structure of the lithosphere along a transect running from South Iberia to North Africa crossing the western Gibraltar Arc. This region is located in the westernmost continental segment of the African-Eurasian plates, characterized by a diffuse transpressive plate boundary. An integrated and self-consistent geophysical-petrological methodology is used to model the lithosphere structure variations and the thermophysical properties of the upper mantle. The crustal structure is mainly constrained by seismic experiments and geological data, whereas the composition of the lithospheric mantle is constrained by xenolith data. The results show large lateral variations in the topography of the lithosphere-asthenosphere boundary. We distinguish different chemical lithospheric mantle domains that reproduce the main trends of the geophysical observables and the modeled P and S wave seismic velocities. A sublithospheric body colder than the surrounding mantle is needed beneath the Betics-Rif to adjust the measured potential fields. We link this body to the Iberian slab localized just to the east of the profile and having some effect on the geoid and Bouguer anomalies. Local isostasy allows explaining most of the topography, but an elastic thickness higher than 10 km is needed to explain local misfits between the Atlas and the Rif Mountains.Funding was granted by the Spanish Government through the project MITE (CGL2014‐59516‐P) and projects Alpimed (PIE‐CSIC‐201530E082) and Subtetis (PIE‐CSIC‐201830E039). A. C. benefitted from a JAE‐Pre‐CP grant from CSIC. A. K. benefitted from EU Marie Curie Initial Training Network “SUBITOP” (674899‐SUBITOP‐H2020‐MSCA‐ITN‐2015).Peer reviewe
    corecore