654 research outputs found

    Grain size analysis in permanent magnets from Kerr microscopy images using machine learning techniques

    Get PDF
    Understanding the relationships between composition, structure, processing and properties helps in the development of improved materials for known applications as well as for new applications. Materials scientists, chemists and physicists have researched these relationships for many years, until the recent past, by characterizing the bulk properties of functional materials and describing them with theoretical models. Magnets are widly used in electric vehicles (EV), hybrid electric vehicles (HEV), data storage, power generation and transmission, sensors etc. The search for novel magnetic phases requires an efficient quantitative microstructure analysis of microstructural information like phases, grain distribution and micromagnetic structural information like domain patterns, and correlating the information with intrinsic magnetic parameters of magnet samples. The information out of micromagnetic domains helps in obtaining the optimized microstructures in magnets that have good intrinsic magnetic properties. This paper is aimed at introducing the use of a traditional machine learning (ML) model with a higher dimensional feature set and a deep learning (DL) model to classify various regions in sintered NdFeB magnets based on Kerr-microscopy images. The obtained results are compared against reference data, which is generated manually by subject experts. Additionally, the results were compared against the approach for grain analysis, which is based on the electron backscatter diffraction (EBSD) technique. Further, the challenges faced by the traditional machine learning model for classifying microstructures in Kerr micrographs are discussed

    Evidence of weak superconductivity at the room-temperature grown LaAlO<sub>3</sub>/SrTiO<sub>3</sub> interface

    Get PDF
    The two-dimensional electron gas at the crystalline LaAlO3/SrTiO3 (c-LAO/STO) interface has sparked large interest due to its exotic properties, including an intriguing gate-tunable superconducting phase. While there is growing evidence of pronounced spatial inhomogeneity in the conductivity at STO-based interfaces, the consequences for superconductivity remain largely unknown. We study interfaces based on amorphous LAO top layers grown at room temperature (a-LAO/STO) and demonstrate a superconducting phase similar to c-LAO/STO, however, with a gate-tunable critical temperature of 460 mK. The dependence of the superconducting critical current on temperature, magnetic field, and back-gate-controlled doping is found to be consistently described by a model of a random array of Josephson-coupled superconducting domains

    Ultra-High Carrier Mobilities in Ferroelectric Domain Wall Corbino Cones at Room Temperature

    Get PDF
    Recently, electrically conducting heterointerfaces between dissimilar band-insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport has been thoroughly explored and fundamental aspects of conduction firmly established. Perhaps surprisingly, similar insights into conceptually much simpler conducting homointerfaces, such as the domain walls that separate regions of different orientations of electrical polarisation within the same ferroelectric band-insulator, are not nearly so well-developed. Addressing this disparity, we herein report magnetoresistance in approximately conical 180° charged domain walls, which occur in partially switched ferroelectric thin film single crystal lithium niobate. This system is ideal for such measurements: firstly, the conductivity difference between domains and domain walls is extremely and unusually large (a factor of at least 1013) and hence currents driven through the thin film, between planar top and bottom electrodes, are overwhelmingly channelled along the walls; secondly, when electrical contact is made to the top and bottom of the domain walls and a magnetic field is applied along their cone axes (perpendicular to the thin film surface), then the test geometry mirrors that of a Corbino disc, which is a textbook arrangement for geometric magnetoresistance measurement. Our data imply carriers at the domain walls with extremely high room temperature Hall mobilities of up to ~ 3,700cm2V-1s-1. This is an unparalleled value for oxide interfaces (and for bulk oxides too) and is most comparable to mobilities in other systems typically seen at cryogenic, rather than at room, temperature

    Simple nonlinearity evaluation and modeling of low-noise amplifiers with application to radio astronomy receivers

    Get PDF
    This paper describes a comparative nonlinear analysis of low-noise amplifiers (LNAs) under different stimuli for use in astronomical applications. Wide-band Gaussian-noise input signals, together with the high values of gain required, make that figures of merit, such as the 1 dB compression (1 dBc) point of amplifiers, become crucial in the design process of radiometric receivers in order to guarantee the linearity in their nominal operation. The typical method to obtain the 1 dBc point is by using single-tone excitation signals to get the nonlinear amplitude to amplitude (AM-AM) characteristic but, as will be shown in the paper, in radiometers, the nature of the wide-band Gaussian-noise excitation signals makes the amplifiers present higher nonlinearity than when using single tone excitation signals. Therefore, in order to analyze the suitability of the LNA’s nominal operation, the 1 dBc point has to be obtained, but using realistic excitation signals. In this work, an analytical study of compression effects in amplifiers due to excitation signals composed of several tones is reported. Moreover, LNA nonlinear characteristics, as AM-AM, total distortion, and power to distortion ratio, have been obtained by simulation and measurement with wide-band Gaussian-noise excitation signals. This kind of signal can be considered as a limit case of a multitone signal, when the number of tones is very high. The work is illustrated by means of the extraction of realistic nonlinear characteristics, through simulation and measurement, of a 31 GHz back-end module LNA used in the radiometer of the QUIJOTE (Q U I JOint TEnerife) CMB experimen
    • …
    corecore