255 research outputs found

    Magnetic Accretion Onto White Dwarfs

    Full text link
    The influence of the magnetic field on process of the accretion onto White Dwarfs in Cataclysmic Variables (CVs) is discussed. Except for the Polars or AM Her objects, the strength of magnetic field can not be measured directly in CVs by modern techniques. But there is growing evidence that most of the types of Cataclysmic Variables classified on the basis of their observational characteristics are behaving in one or the other way under the influence of the magnetic field of the accreting White Dwarf, among other things. Here, we discuss the bulk of CVs that are traditionally considered as non magnetic and review the properties that could be best explained by the magnetic governed accretion process.Comment: 8 pages, 2 figures. To appear in the conference proceedings of `Interacting Binaries: Accretion, Evolution & Outcomes' (Cefalu, July 4-10 2004

    On the orbital period of the magnetic Cataclysmic Variable HS 0922+1333

    Full text link
    Context: The object HS 0922+1333 was visited briefly in 2002 in a mini survey of low accretion rate polars (LARPs) in order to test if they undergo high luminosity states similar to ordinary polars. On the basis of that short observation the suspicion arose that the object might be an asynchronous polar (Tovmassian et al. 2004). The disparity between the presumed orbital and spin period appeared to be quite unusual. Aims: We performed follow-up observations of the object to resolve the problem. Methods: New simultaneous spectroscopic and photometric observations spanning several years allowed measurements of radial velocities of emission and absorption lines from the secondary star and brightness variations due to synchrotron emission from the primary. Results: New observations show that the object is actually synchronous and its orbital and spin period are equal to 4.04 hours. Conclusions: We identify the source of confusion of previous observations to be a high velocity component of emission line arousing from the stream of matter leaving L1 point.Comment: 5 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    The Characteristics of Magnetic CVs in the Period Gap

    Get PDF
    We have observed several magnetic cataclysmic variables located in the range between 2 and 3 hours, known as the period gap. This work was prompted by the recent discovery of RX J1554.2+2721. It has 2.54 hours orbital period and shows almost pure cyclotron continuum in a low luminosity state, similar to HS1023+3900, HS0922+1333 and RBS206. These are low accretion rate polars (LARPs) known to have mass transfer rates of order of a few 10^-13Msun/year. The aim of the study was to find out, if magnetic systems filling the period gap are in any way different from their counterparts outside that range of periods. The only significant difference we encounter, is much higher number of asynchronous magnetic systems to-wards longer periods than below the gap.Comment: 7 pages, 7 figures, To appear in `Magnetic Cataclysmic Variables', IAU Col. 190 (Cape Town), eds. M. Cropper & S. Vrielman

    The Properties of the Heterogeneous Shakhbazyan Groups of Galaxies in the SDSS

    Full text link
    We present a systematic study of the sub-sample of Shakhbazyan groups (SHKs) covered by the Sloan Digital Sky Survey Data Release--5 (SDSS-5). SHKs probe an environment with characteristics which are intermediate between those of loose and very compact groups. Surprisingly, we found that several groups identifying algorithms (e.g. Berlind et al. 2006, Tago et al. 2008) miss this type of structures. Using the SDSS-5 spectroscopic data and the photometric redshifts derived in D'Abrusco et al. 2007, we identified possible group members in photometric redshift space and derived, for each group, several individual properties. We also combined pointed and stacked Rosat All Sky Survey data to investigate the X-ray luminosities of these systems. Our study confirms that the majority of groups are physical entities with richness in the range 3--13 galaxies, and properties ranging between those of loose and compact groups. We confirm that SHK groups are richer in early-type galaxies than the surrounding environment and the field, as expected from the morphology-density relation and from the selection of groups of red galaxies. Furthermore, our work supports the existence of two sub-classes of structures, the first one being formed by compact and isolated groups and the second formed by extended structures. We suggest that while the first class of objects dwells in less dense regions like the outer parts of clusters or the field, possibly sharing the properties of Hickson Compact Groups, the more extended structures represent a mixture of [core+halo] configurations and cores of rich clusters. X-ray luminosities for SHKs are generally consistent with these results and with the expectations for the L_X-sigma_v relation, but also suggest the velocity dispersions reported in literature are underestimated for some of the richest systems.Comment: 20 pages, 14 figures, 4 tables. Accepted for publication by MNRA

    Shakhbazian compact galaxy groups. II. Photometric and spectroscopic study of ShCG 376

    Get PDF
    The results of the redshift measurements and of the detailed surface photometry in BVR of the compact group ShCG 376 are presented. The radial velocity dispersion, the virial mass, the total luminosity, the M/L ratio, and the crossing time of the group are estimated. The group consists of eight accordant redshift spiral galaxies. Four (or possibly five) of the group members have emission-line spectra. Such morphological content and the number of emission-line galaxies are very atypical for compact galaxy groups. There are signs of interaction between some members of the group. It is suggested that the irregular shape of the brightest galaxy No. 4 is probably due to interaction with other members of the group, particularly, the emission line galaxy No. 6 with a discordant redshift (Delta v = 2600 km/s). It is speculated that the latter galaxy may be a infalling intruder to the group.Comment: accepted A&A, 7 pages, 6 figures are in separate file

    CVs Around the Minimum Orbital Period

    Get PDF
    We discussed features of Cataclysmic Variables at the period minimum. In general, most of them must be WZ Sge-type objects. Main characteristics of the prototype star (WZ Sge) are discussed. A part of WZ Sge-type objects has evolved past the period limit and formed the bounce back systems. We also explore conditions and structure of accretion disks in such systems. We show that the accretion disk in a system with extreme mass ratio grows in size reaching a 2:1 resonance radius and are relatively cool. They also become largely optically thin in the continuum, contributing to the total flux less than the stellar components of the system. In contrast, the viscosity and the temperature in spiral arms formed at the outer edge of the disk are higher and their contribution in continuum plays an increasingly important role. We model such disks and generate light curves which successfully simulate the observed double-humped light curves in the quiescence

    The kinematics of the most oxygen-poor planetary nebula PN G135.9+55.9

    Full text link
    PN G135.9+55.9 is a compact, high excitation nebula that has been identified recently as the most oxygen-poor halo planetary nebula. Given its very peculiar characteristics and potential implications in the realms of stellar and Galactic evolution, additional data are needed to firmly establish its true nature and evolutionary history. Here we present the first long-slit, high spectral resolution observations of this object in the lines of Hα\alpha and He II 4686. The position-velocity data are shown to be compatible with the interpretation of PN G135.9+55.9 being a halo planetary nebula. In both emission lines, we find the same two velocity components that characterize the kinematics as that of an expanding elliptical envelope. The kinematics is consistent with a prolate ellipsoidal model with axis ratio about 2:1, a radially decreasing emissivity distribution, a velocity distribution that is radial, and an expansion velocity of 30 km/s for the bulk of the material. To fit the observed line profiles, this model requires an asymmetric matter distribution, with the blue-shifted emission considerably stronger than the red-shifted emission. We find that the widths of the two velocity components are substantially wider than those expected due to thermal motions, but kinematic structure in the projected area covered by the slit appears to be sufficient to explain the line widths. The present data also rule out the possible presence of an accretion disk in the system that could have been responsible for a fraction of the Hα\alpha flux, further supporting the planetary nebula nature of PN G135.9+55.9.Comment: accepted by Astronomy & Astrophysic
    • …
    corecore