124 research outputs found

    MMP-28 as a regulator of myelination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinase-28 (MMP-28) is a poorly understood member of the matrix metalloproteinase family. Metalloproteinases are important mediators in the development of the nervous system and can contribute to the maturation of the neural micro-environment.</p> <p>Results</p> <p>MMP-28 added to myelinating rat dorsal root ganglion (DRG) co-cultures reduces myelination and two antibodies targeted to MMP-28 (pAb180 and pAb183) are capable of binding MMP-28 and inhibiting its activity in a dose-dependent manner. Addition of 30 nM pAb180 or pAb183 to rat DRG cultures resulted in the 2.6 and 4.8 fold enhancement of myelination respectively while addition of MMP-28 to DRG co-cultures resulted in enhanced MAPK, ErbB2 and ErbB3 phosphorylation. MMP-28 protein expression was increased within demyelinated lesions of mouse experimental autoimmune encephalitis (EAE) and human multiple sclerosis lesions compared to surrounding normal tissue.</p> <p>Conclusion</p> <p>MMP-28 is upregulated in conditions of demyelination in vivo, induces signaling in vitro consistent with myelination inhibition and, neutralization of MMP-28 activity can enhance myelination in vitro. These results suggest inhibition of MMP-28 may be beneficial under conditions of dysmyelination.</p

    Integrin-mediated axoglial interactions initiate myelination in the central nervous system

    Get PDF
    All but the smallest-diameter axons in the central nervous system are myelinated, but the signals that initiate myelination are unknown. Our prior work has shown that integrin signaling forms part of the cell–cell interactions that ensure only those oligodendrocytes contacting axons survive. Here, therefore, we have asked whether integrins regulate the interactions that lead to myelination. Using homologous recombination to insert a single-copy transgene into the hypoxanthine phosphoribosyl transferase (hprt) locus, we find that mice expressing a dominant-negative Ξ²1 integrin in myelinating oligodendrocytes require a larger axon diameter to initiate timely myelination. Mice with a conditional deletion of focal adhesion kinase (a signaling molecule activated by integrins) exhibit a similar phenotype. Conversely, transgenic mice expressing dominant-negative Ξ²3 integrin in oligodendrocytes display no myelination abnormalities. We conclude that Ξ²1 integrin plays a key role in the axoglial interactions that sense axon size and initiate myelination, such that loss of integrin signaling leads to a delay in myelination of small-diameter axons

    Substrate Micropatterning as a New in Vitro Cell Culture System to Study Myelination

    Get PDF
    ArtΓ­culo de publicaciΓ³n ISIMyelination is a highly regulated developmental process whereby oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system ensheathe axons with a multilayered concentric membrane. Axonal myelination increases the velocity of nerve impulse propagation. In this work, we present a novel in vitro system for coculturing primary dorsal root ganglia neurons along with myelinating cells on a highly restrictive and micropatterned substrate. In this new coculture system, neurons survive for several weeks, extending long axons on defined Matrigel tracks. On these axons, myelinating cells can achieve robust myelination, as demonstrated by the distribution of compact myelin and nodal markers. Under these conditions, neurites and associated myelinating cells are easily accessible for studies on the mechanisms of myelin formation and on the effects of axonal damage on the myelin sheath.Regenerative Medicine and Nanomedicine Initiative of the Canadian Institutes of Health Research (CIHR) RMF-7028 FONDECYT 1080252 CIHR Ministry of Industry of Canada Rio Tinto Alcan Molson Foundatio

    Unraveling gene expression profiles in peripheral motor nerve from Amyotrophic Lateral Sclerosis patients : insights into pathogenesis

    Get PDF
    The aim of the present study is to investigate the molecular pathways underlying amyotrophic lateral sclerosis (ALS) pathogenesis within the peripheral nervous system. We analyzed gene expression changes in human motor nerve diagnostic biopsies obtained from eight ALS patients and seven patients affected by motor neuropathy as controls. An integrated transcriptomics and system biology approach was employed. We identified alterations in the expression of 815 genes, with 529 up-regulated and 286 down-regulated in ALS patients. Up-regulated genes clustered around biological process involving RNA processing and protein metabolisms. We observed a significant enrichment of up-regulated small nucleolar RNA transcripts (p = 2.68 1710-11) and genes related to endoplasmic reticulum unfolded protein response and chaperone activity. We found a significant down-regulation in ALS of genes related to the glutamate metabolism. Interestingly, a network analysis highlighted HDAC2, belonging to the histone deacetylase family, as the most interacting node. While so far gene expression studies in human ALS have been performed in postmortem tissues, here specimens were obtained from biopsy at an early phase of the disease, making these results new in the field of ALS research and therefore appealing for gene discovery studies

    Targeted Ablation of Oligodendrocytes Triggers Axonal Damage

    Get PDF
    Glial dysfunction has been implicated in a number of neurodegenerative diseases. In this study we investigated the consequences of glial and oligodendrocyte ablation on neuronal integrity and survival in Drosophila and adult mice, respectively. Targeted genetic ablation of glia was achieved in the adult Drosophila nervous system using the GAL80-GAL4 system. In mice, oligodendrocytes were depleted by the injection of diphtheria toxin in MOGi-Cre/iDTR double transgenic animals. Acute depletion of oligodendrocytes induced axonal injury, but did not cause neuronal cell death in mice. Ablation of glia in adult flies triggered neuronal apoptosis and resulted in a marked reduction in motor performance and lifespan. Our study shows that the targeted depletion of glia triggers secondary neurotoxicity and underscores the central contribution of glia to neuronal homeostasis. The models used in this study provide valuable systems for the investigation of therapeutic strategies to prevent axonal or neuronal damage

    Genetic Interaction between MTMR2 and FIG4 Phospholipid Phosphatases Involved in Charcot-Marie-Tooth Neuropathies

    Get PDF
    We previously reported that autosomal recessive demyelinating Charcot-Marie-Tooth (CMT) type 4B1 neuropathy with myelin outfoldings is caused by loss of MTMR2 (Myotubularin-related 2) in humans, and we created a faithful mouse model of the disease. MTMR2 dephosphorylates both PtdIns3P and PtdIns(3,5)P2, thereby regulating membrane trafficking. However, the function of MTMR2 and the role of the MTMR2 phospholipid phosphatase activity in vivo in the nerve still remain to be assessed. Mutations in FIG4 are associated with CMT4J neuropathy characterized by both axonal and myelin damage in peripheral nerve. Loss of Fig4 function in the plt (pale tremor) mouse produces spongiform degeneration of the brain and peripheral neuropathy. Since FIG4 has a role in generation of PtdIns(3,5)P2 and MTMR2 catalyzes its dephosphorylation, these two phosphatases might be expected to have opposite effects in the control of PtdIns(3,5)P2 homeostasis and their mutations might have compensatory effects in vivo. To explore the role of the MTMR2 phospholipid phosphatase activity in vivo, we generated and characterized the Mtmr2/Fig4 double null mutant mice. Here we provide strong evidence that Mtmr2 and Fig4 functionally interact in both Schwann cells and neurons, and we reveal for the first time a role of Mtmr2 in neurons in vivo. Our results also suggest that imbalance of PtdIns(3,5)P2 is at the basis of altered longitudinal myelin growth and of myelin outfolding formation. Reduction of Fig4 by null heterozygosity and downregulation of PIKfyve both rescue Mtmr2-null myelin outfoldings in vivo and in vitro

    Neuregulin 1 type III reduces severity in a mouse model of Congenital Hypomyelinating Neuropathy

    Get PDF
    Myelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 type III regulate Schwann cell fate and myelination. Here we ask if modulating neuregulin 1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN). Using a mouse model of CHN, we rescued the myelination defects by early overexpression of neuregulin 1 type III. Surprisingly, the rescue was independent from the upregulation of Egr2 or essential myelin genes. Rather, we observed the activation of MAPK/ERK and other myelin genes such as peripheral myelin protein 2 (Pmp2) and oligodendrocyte myelin glycoprotein (Omg). We also confirmed that the permanent activation of MAPK/ERK in Schwann cells has detrimental effects on myelination. Our findings demonstrate that the modulation of axon-to-glial neuregulin 1 type III signaling has beneficial effects and restores myelination defects during development in a model of CHN

    Chondroitinase and Growth Factors Enhance Activation and Oligodendrocyte Differentiation of Endogenous Neural Precursor Cells after Spinal Cord Injury

    Get PDF
    The adult spinal cord harbours a population of multipotent neural precursor cells (NPCs) with the ability to replace oligodendrocytes. However, despite this capacity, proliferation and endogenous remyelination is severely limited after spinal cord injury (SCI). In the post-traumatic microenvironment following SCI, endogenous spinal NPCs mainly differentiate into astrocytes which could contribute to astrogliosis that exacerbate the outcomes of SCI. These findings emphasize a key role for the post-SCI niche in modulating the behaviour of spinal NPCs after SCI. We recently reported that chondroitin sulphate proteoglycans (CSPGs) in the glial scar restrict the outcomes of NPC transplantation in SCI by reducing the survival, migration and integration of engrafted NPCs within the injured spinal cord. These inhibitory effects were attenuated by administration of chondroitinase (ChABC) prior to NPC transplantation. Here, in a rat model of compressive SCI, we show that perturbing CSPGs by ChABC in combination with sustained infusion of growth factors (EGF, bFGF and PDGF-AA) optimize the activation and oligodendroglial differentiation of spinal NPCs after injury. Four days following SCI, we intrathecally delivered ChABC and/or GFs for seven days. We performed BrdU incorporation to label proliferating cells during the treatment period after SCI. This strategy increased the proliferation of spinal NPCs, reduced the generation of new astrocytes and promoted their differentiation along an oligodendroglial lineage, a prerequisite for remyelination. Furthermore, ChABC and GF treatments enhanced the response of non-neural cells by increasing the generation of new vascular endothelial cells and decreasing the number of proliferating macrophages/microglia after SCI. In conclusions, our data strongly suggest that optimization of the behaviour of endogenous spinal NPCs after SCI is critical not only to promote endogenous oligodendrocyte replacement, but also to reverse the otherwise detrimental effects of their activation into astrocytes which could negatively influence the repair process after SCI

    Increased expression of receptor phosphotyrosine phosphatase-Ξ²/ΞΆ is associated with molecular, cellular, behavioral and cognitive schizophrenia phenotypes

    Get PDF
    Schizophrenia is a serious and chronic mental disorder, in which both genetic and environmental factors have a role in the development of the disease. Neuregulin-1 (NRG1) is one of the most established genetic risk factors for schizophrenia, and disruption of NRG1 signaling has been reported in this disorder. We reported previously that NRG1/ErbB4 signaling is inhibited by receptor phosphotyrosine phosphatase-Ξ²/ΞΆ (RPTP Ξ²/ΞΆ) and that the gene encoding RPTPΞ²/ΞΆ (PTPRZ1) is genetically associated with schizophrenia. In this study, we examined the expression of RPTPΞ²/ΞΆ in the brains of patients with schizophrenia and observed increased expression of this gene. We developed mice overexpressing RPTPΞ²/ΞΆ (PTPRZ1-transgenic mice), which showed reduced NRG1 signaling, and molecular and cellular changes implicated in the pathogenesis of schizophrenia, including altered glutamatergic, GABAergic and dopaminergic activity, as well as delayed oligodendrocyte development. Behavioral analyses also demonstrated schizophrenia-like changes in the PTPRZ1-transgenic mice, including reduced sensory motor gating, hyperactivity and working memory deficits. Our results indicate that enhanced RPTPΞ²/ΞΆ signaling can contribute to schizophrenia phenotypes, and support both construct and face validity for PTPRZ1-transgenic mice as a model for multiple schizophrenia phenotypes. Furthermore, our results implicate RPTPΞ²/ΞΆ as a therapeutic target in schizophrenia
    • …
    corecore