16 research outputs found

    Sarcoma treatment in the era of molecular medicine

    Get PDF
    Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.Peer reviewe

    Cause and effect of microenvironmental acidosis on bone metastases

    No full text
    Skeletal involvement is a frequent and troublesome complication in advanced cancers. In the process of tumor cells homing to the skeleton to form bone metastases (BM), different mechanisms allow tumor cells to interact with cells of the bone microenvironment and seed in the bone tissue. Among these, tumor acidosis has been directly associated with tumor invasion and aggressiveness in several types of cancer although it has been less explored in the context of BM. In bone, the association of local acidosis and cancer invasiveness is even more important for tumor expansion since the extracellular matrix is formed by both organic and hard inorganic matrices and bone cells are used to sense protons and adapt or react to a low pH to maintain tissue homeostasis. In the BM microenvironment, increased concentration of protons may derive not only from glycolytic tumor cells but also from tumor-induced osteoclasts, the bone-resorbing cells, and may influence the progression or symptoms of BM in many different ways, by directly enhancing cancer cell motility and aggressiveness, or by modulating the functions of bone cells versus a pro-tumorigenic phenotype, or by inducing bone pain. In this review, we will describe and discuss the cause of acidosis in BM, its role in BM microenvironment, and which are the final effectors that may be targeted to treat metastatic patients

    Unravelling the Effect of Citrate on the Features and Biocompatibility of Magnesium Phosphate-Based Bone Cements

    No full text
    In the framework of new materials for orthopedic applications, Magnesium Phosphate-based Cements (MPCs) are currently the focus of active research in biomedicine, given their promising features; in this field, the loading of MPCs with active molecules to be released in the proximity of newly forming bone could represent an innovative approach to enhance the in vivo performances of the biomaterial. In this work, we describe the preparation and characterization of MPCs containing citrate, an ion naturally present in bone which presents beneficial effects when released in the proximity of newly forming bone tissue. The cements were characterized in terms of handling properties, setting time, mechanical properties, crystallinity, and microstructure, so as to unravel the effect of citrate concentration on the features of the material. Upon incubation in aqueous media, we demonstrated that citrate could be successfully released from the cements, while contributing to the alkalinization of the surroundings. The cytotoxicity of the materials toward human fibroblasts was also tested, revealing the importance of a fine modulation of released citrate to guarantee the biocompatibility of the material

    Comparative "in vitro" evaluation of the antiresorptive activity residing in four Ayurvedic medicinal plants. Hemidesmus indicus emerges for its potential in the treatment of bone loss diseases.

    No full text
    ETHNOPHARMACOLOGICAL RELEVANCE: Four Indian plants, traditionally used in Ayurvedic medicine: Asparagus racemosus Willd., Emblica officinalis Gaertn., Hemidesmus indicus R. Br., and Rubia cordifolia L. were selected on the basis of their ethnobotanical use and of scientific evidence that suggests a potential efficacy in the treatment of bone-loss diseases. The antiresorptive properties of the four plants have been investigated. The aim was to provide adequate evidence for the exploitation of natural compounds as alternative therapeutics for the treatment of diseases caused by increased osteoclast activity. MATERIALS AND METHODS: Decoctions were prepared from dried plant material according to the traditional procedure and standardization by HPLC was performed using marker compounds for each species. Total polyphenols, flavonoids and radical scavenging activity of the decoctions were also determined. The bioactivity of the plant decoctions was evaluated in subsequent phases. (1) A cytotoxicity screening was performed on the mouse monocytic RAW 264.7 cell line to define the concentrations that could be utilized in the following step. (2) The antiresorptive properties of plant decoctions were compared with that of a "gold standard" drug (alendronate) by measuring osteoclastogenesis inhibition and osteoclast apoptosis. (3) The toxic effect on bone forming cells was excluded by evaluating the impact on the proliferation of osteogenic precursors (mesenchymal stem cells, MSC). RESULTS: All the decoctions inhibited osteoclastogenesis similarly to alendronate at the highest doses, but Hemidesmus indicus and Rubia cordifolia were also effective at lower concentrations. Apoptosis increased significantly when cells were exposed to the highest concentration of Emblica officinalis, Hemidesmus indicus, and Rubia cordifolia. All concentrations of Emblica officinalis tested inhibited the proliferation of osteogenic precursors, while only the highest doses of Asparagus racemosus and Rubia cordifolia were toxic. On the contrary, Hemidesmus indicus did not affect osteogenic precursor growth at any concentration tested. CONCLUSION: Among the medicinal plants included in the study, Hemidesmus indicus showed the greatest antiosteoclastic activity without toxic effect on osteogenic precursors. Therefore, Hemidesmus indicus exhibits the properties of an antiresorptive drug and represents the ideal candidate for further clinical investigations

    Synthesis, characterization and biological activity of hydroxyl- bisphosphonic analogs of bile acids

    No full text
    Bisphosphonates (BPs) are now the most widely used drugs for diseases associated with increased bone resorption, such as osteoporosis, and tumor bone diseases. A significant drawback of the BPs is their poor oral absorption that is enhanced by the presence of bile acid substituents in the bisphosphonate framework, with no toxic effects. A straightforward synthesis of bile acid-containing hydroxy-bisphosphonates and a full characterization of these pharmaceutically important molecules, including an evaluation of affinity and the mechanism of binding to hydroxyapatite, is presented. The biological activity of bile acid-containing bisphosphonate salts was determined using the neutral-red assay on the L929 cell line and primary cultures of osteoclasts. The bioactivity of the new compounds was found superior than bisphosphonates of established activity. \ua9 2012 Elsevier Masson SAS. All rights reserved

    Synthesis, characterization and biological activity of hydroxyl-bisphosphonic analogs of bile acids

    No full text
    Bisphosphonates (BPs) are now the most widely used drugs for diseases associated with increased bone resorption, such as osteoporosis, and tumor bone diseases. A significant drawback of the BPs is their poor oral absorption that is enhanced by the presence of bile acid substituents in the bisphosphonate framework, with no toxic effects. A straightforward synthesis of bile acid-containing hydroxybisphosphonates and a full characterization of these pharmaceutically important molecules, including an evaluation of affinity and the mechanism of binding to hydroxyapatite, is presented. The biological activity of bile acid-containing bisphosphonate salts was determined using the neutral-red assay on the L929 cell line and primary cultures of osteoclasts. The bioactivity of the new compounds was found superior than bisphosphonates of established activit

    Novel histone deacetylase inhibitors induce growth arrest, apoptosis, and differentiation in sarcoma cancer stem cells

    No full text
    Musculoskeletal sarcomas are aggressive malignan-cies of bone and soft tissues often affecting children andadolescents. Histone deacetylase inhibitors (HDACi) have beenproposed to counteract cancer stem cells (CSCs) in solidneoplasms. When tested in human osteosarcoma, rhabdomyosar-coma, and Ewing’s sarcoma stem cells, the new HDACi MC1742(1) and MC2625 (2) increased acetyl-H3 and acetyl-tubulin levelsand inhibited CSC growth by apoptosis induction. At nontoxicdoses,1promoted osteogenic differentiation. Further investigationwith1will be done in preclinical sarcoma models

    Effect of calcium phosphate heparinization on the in vitro inflammatory response and osteoclastogenesis of human blood precursor cells.

    Get PDF
    The immobilization of natural molecules on synthetic bone grafts stands as a strategy to enhance their biological interactions. During the early stages of healing, immune cells and osteoclasts (OC) modulate the inflammatory response and resorb the biomaterial, respectively. In this study, heparin, a naturally occurring molecule in the bone extracellular matrix, was covalently immobilized on biomimetic calcium-deficient hydroxyapatite (CDHA). The effect of heparin-functionalized CDHA on inflammation and osteoclastogenesis was investigated using primary human cells and compared with pristine CDHA and beta-tricalcium phosphate (β-TCP). Biomimetic substrates led to lower oxidative stresses by neutrophils and monocytes than sintered β-TCP, even though no further reduction was induced by the presence of heparin. In contrast, heparinized CDHA fostered osteoclastogenesis. Optical images of stained TRAP positive cells showed an earlier and higher presence of multinucleated cells, compatible with OC at 14 days, while pristine CDHA and β-TCP present OC at 21-28 days. Although no statistically significant differences were found in the OC activity, microscopy images evidenced early stages of degradation on heparinized CDHA, compatible with osteoclastic resorption. Overall, the results suggest that the functionalization with heparin fostered the formation and activity of OC, thus offering a promising strategy to integrate biomaterials in the bone remodelling cycle by increasing their OC-mediated resorption

    Effect of calcium phosphate heparinization on the in vitro inflammatory response and osteoclastogenesis of human blood precursor cells

    No full text
    The immobilization of natural molecules on synthetic bone grafts stands as a strategy to enhance their biological interactions. During the early stages of healing, immune cells and osteoclasts (OC) modulate the inflammatory response and resorb the biomaterial, respectively. In this study, heparin, a naturally occurring molecule in the bone extracellular matrix, was covalently immobilized on biomimetic calcium-deficient hydroxyapatite (CDHA). The effect of heparin-functionalized CDHA on inflammation and osteoclastogenesis was investigated using primary human cells and compared with pristine CDHA and beta-tricalcium phosphate (beta-TCP). Biomimetic substrates led to lower oxidative stresses by neutrophils and monocytes than sintered beta-TCP, even though no further reduction was induced by the presence of heparin. In contrast, heparinized CDHA fostered osteoclastogenesis. Optical images of stained TRAP positive cells showed an earlier and higher presence of multinucleated cells, compatible with OC at 14 days, while pristine CDHA and beta-TCP present OC at 21-28 days. Although no statistically significant differences were found in the OC activity, microscopy images evidenced early stages of degradation on heparinized CDHA, compatible with osteoclastic resorption. Overall, the results suggest that the functionalization with heparin fostered the formation and activity of OC, thus offering a promising strategy to integrate biomaterials in the bone remodelling cycle by increasing their OC-mediated resorption
    corecore