502 research outputs found
Recommended from our members
Exploring the limit of metazoan thermal tolerance via comparative proteomics: thermally induced changes in protein abundance by two hydrothermal vent polychaetes
Temperatures around hydrothermal vents are highly variable, ranging from near freezing up to 300°C. Nevertheless, animals thrive around vents, some of which live near the known limits of animal thermotolerance. Paralvinella sulfincola, an extremely thermotolerant vent polychaete, and Paralvinella palmiformis, a cooler-adapted congener, are found along the Juan de Fuca Ridge in the northwestern Pacific. We conducted shipboard high-pressure thermotolerance experiments on both species to characterize the physiological adaptations underlying P. sulfincola's pronounced thermotolerance. Quantitative proteomics, expressed sequence tag (EST) libraries and glutathione assays revealed that P. sulfincola (i) exhibited an upregulation in the synthesis and recycling of glutathione with increasing temperature, (ii) downregulated nicotinamide adenine dinucleotide (NADH) and succinate dehydrogenases (key enzymes in oxidative phosphorylation) with increasing temperature, and (iii) maintained elevated levels of heat shock proteins (HSPs) across all treatments. In contrast, P. palmiformis exhibited more typical responses to increasing temperatures (e.g. increasing HSPs at higher temperatures). These data reveal differences in how a mesotolerant and extremely thermotolerant eukaryote respond to thermal stress, and suggest that P. sulfincola's capacity to mitigate oxidative stress via increased synthesis of antioxidants and decreased flux through the mitochondrial electron transport chain enable pronounced thermotolerance. Ultimately, oxidative stress may be the key factor in limiting all metazoan thermotolerance.Organismic and Evolutionary Biolog
Recommended from our members
Genome Sequence of the Chestnut Blight Fungus Cryphonectria parasitica EP155: A Fundamental Resource for an Archetypical Invasive Plant Pathogen.
Cryphonectria parasitica is the causal agent of chestnut blight, a fungal disease that almost entirely eliminated mature American chestnut from North America over a 50-year period. Here, we formally report the genome of C. parasitica EP155 using a Sanger shotgun sequencing approach. After finishing and integration with simple-sequence repeat markers, the assembly was 43.8 Mb in 26 scaffolds (L50 = 5; N50 = 4.0Mb). Eight chromosomes are predicted: five scaffolds have two telomeres and six scaffolds have one telomere sequence. In total, 11,609 gene models were predicted, of which 85% show similarities to other proteins. This genome resource has already increased the utility of a fundamental plant pathogen experimental system through new understanding of the fungal vegetative incompatibility system, with significant implications for enhancing mycovirus-based biological control
Assessing the genetic association between vitamin B6 metabolism and genetic generalized epilepsy
Altered vitamin B6 metabolism due to pathogenic variants in the gene PNPO causes early onset epileptic encephalopathy, which can be treated with high doses of vitamin B6. We recently reported that single nucleotide polymorphisms (SNPs) that influence PNPO expression in the brain are associated with genetic generalized epilepsy (GGE). However, it is not known whether any of these GGE-associated SNPs influence vitamin B6 metabolite levels. Such an influence would suggest that vitamin B6 could play a role in GGE therapy. Here, we performed genome-wide association studies (GWAS) to assess the influence of GGE associated genetic variants on measures of vitamin B6 metabolism in blood plasma in 2232 healthy individuals. We also asked if SNPs that influence vitamin B6 were associated with GGE in 3122 affected individuals and 20,244 controls. Our GWAS of vitamin B6 metabolites reproduced a previous association and found a novel genome-wide significant locus. The SNPs in these loci were not associated with GGE. We found that 84 GGE-associated SNPs influence expression levels of PNPO in the brain as well as in blood. However, these SNPs were not associated with vitamin B6 metabolism in plasma. By leveraging polygenic risk scoring (PRS), we found suggestive evidence of higher catabolism and lower levels of the active and transport forms of vitamin B6 in GGE, although these findings require further replication.Peer reviewe
101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens.
Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species
The Impact of Kaluza-Klein Excited W Boson on the Single Top at LHC and Comparison with other Models
We study the s-channel single top quark production at the LHC in the context
of extra dimension theories, including the Kaluza-Klein (KK) decomposition. It
is shown that the presence of the first KK excitation of gauge boson can
reduce the total cross section of s-channel single top production considerably
if () for () in
proton-proton collisions. Then the results will be compared with the impacts of
other beyond Standard Model (SM) theories on the cross section of single top
s-channel. The possibility of distinguishing different models via their effects
on the production cross section of the s-channel is discussed.Comment: 23 pages,6 figure
Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector
The Large Underground Xenon (LUX) dark matter experiment aims to detect rare
low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The
radiogenic backgrounds in the LUX detector have been measured and compared with
Monte Carlo simulation. Measurements of LUX high-energy data have provided
direct constraints on all background sources contributing to the background
model. The expected background rate from the background model for the 85.3 day
WIMP search run is
~events~keV~kg~day
in a 118~kg fiducial volume. The observed background rate is
~events~keV~kg~day,
consistent with model projections. The expectation for the radiogenic
background in a subsequent one-year run is presented.Comment: 18 pages, 12 figures / 17 images, submitted to Astropart. Phy
Search for single vector-like quarks in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for hypothetical vector-like quarks in ppbar collisions
at sqrt(s) = 1.96 TeV. The data were collected by the D0 detector at the
Fermilab Tevatron Collider and correspond to an integrated luminosity of 5.4
fb^(-1). We select events with a final state composed of a W or Z boson and a
jet consistent with a heavy object decay. We observe no significant excess in
comparison to the background prediction and set limits on production cross
sections for vector-like quarks decaying to W+jet and Z+jet. These are the most
stringent mass limits for electroweak single vector-like quark production at
hadron colliders.Comment: submitted to Phys. Rev. Let
- …