20 research outputs found

    Multi-vendor standardized sequence for edited magnetic resonance spectroscopy

    Get PDF
    Spectral editing allows direct measurement of low-concentration metabolites, such as GABA, glutathione (GSH) and lactate (Lac), relevant for understanding brain (patho)physiology. The most widely used spectral editing technique is MEGA-PRESS, which has been diversely implemented across research sites and vendors, resulting in variations in the final resolved edited signal. In this paper, we describe an effort to develop a new universal MEGA-PRESS sequence with HERMES functionality for the major MR vendor platforms with standardized RF pulse shapes, durations, amplitudes and timings. New RF pulses were generated for the universal sequence. Phantom experiments were conducted on Philips, Siemens, GE and Canon 3 T MRI scanners using 32-channel head coils. In vivo experiments were performed on the same six subjects on Philips and Siemens scanners, and on two additional subjects, one on GE and one on Canon scanners. On each platform, edited MRS experiments were conducted with the vendor-native and universal MEGA-PRESS sequences for GABA (TE = 68 ms) and Lac editing (TE = 140 ms). Additionally, HERMES for GABA and GSH was performed using the universal sequence at TE = 80 ms. The universal sequence improves inter-vendor similarity of GABA-edited and Lac-edited MEGA-PRESS spectra. The universal HERMES sequence yields both GABA- and GSH-edited spectra with negligible levels of crosstalk on all four platforms, and with strong agreement among vendors for both edited spectra. In vivo GABA+/Cr, Lac/Cr and GSH/Cr ratios showed relatively low variation between scanners using the universal sequence. In conclusion, phantom and in vivo experiments demonstrate successful implementation of the universal sequence across all four major vendors, allowing editing of several metabolites across a range of TEs.publishedVersio

    Big GABA II: Water-referenced edited MR spectroscopy at 25 research sites

    Get PDF
    Accurate and reliable quantification of brain metabolites measured in vivo using 1H magnetic resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, spectrally edited γ-aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using GABA+ (GABA + co-edited macromolecules (MM)) and MM-suppressed GABA editing. The unsuppressed water signal from the volume of interest was acquired for concentration referencing. Whole-brain T1-weighted structural images were acquired and segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17% for the GABA + data and 29% for the MM-suppressed GABA data. The mean within-site coefficient of variation was 10% for the GABA + data and 19% for the MM-suppressed GABA data. Vendor differences contributed 53% to the total variance in the GABA + data, while the remaining variance was attributed to site- (11%) and participant-level (36%) effects. For the MM-suppressed data, 54% of the variance was attributed to site differences, while the remaining 46% was attributed to participant differences. Results from an exploratory analysis suggested that the vendor differences were related to the unsuppressed water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit similar levels of variance to creatine-referenced GABA measurements. It is concluded that quantification using internal tissue water referencing is a viable and reliable method for the quantification of in vivo GABA levels

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p &lt; 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p

    NIfTI-MRS: A standard data format for magnetic resonance spectroscopy

    Get PDF
    Purpose Multiple data formats in the MRS community currently hinder data sharing and integration. NIfTI-MRS is proposed as a standard spectroscopy data format, implemented as an extension to the Neuroimaging informatics technology initiative (NIfTI) format. This standardized format can facilitate data sharing and algorithm development as well as ease integration of MRS analysis alongside other imaging modalities. Methods A file format using the NIfTI header extension framework incorporates essential spectroscopic metadata and additional encoding dimensions. A detailed description of the specification is provided. An open-source command-line conversion program is implemented to convert single-voxel and spectroscopic imaging data to NIfTI-MRS. Visualization of data in NIfTI-MRS is provided by development of a dedicated plugin for FSLeyes, the FMRIB Software Library (FSL) image viewer. Results Online documentation and 10 example datasets in the proposed format are provided. Code examples of NIfTI-MRS readers are implemented in common programming languages. Conversion software, spec2nii, currently converts 14 formats where data is stored in image-space to NIfTI-MRS, including Digital Imaging and Communications in Medicine (DICOM) and vendor proprietary formats. Conclusion NIfTI-MRS aims to solve issues arising from multiple data formats being used in the MRS community. Through a single conversion point, processing and analysis of MRS data are simplified, thereby lowering the barrier to use of MRS. Furthermore, it can serve as the basis for open data sharing, collaboration, and interoperability of analysis programs. Greater standardization and harmonization become possible. By aligning with the dominant format in neuroimaging, NIfTI-MRS enables the use of mature tools present in the imaging community, demonstrated in this work by using a dedicated imaging tool, FSLeyes, for visualization

    Multi-vendor standardized sequence for edited magnetic resonance spectroscopy

    No full text
    Spectral editing allows direct measurement of low-concentration metabolites, such as GABA, glutathione (GSH) and lactate (Lac), relevant for understanding brain (patho)physiology. The most widely used spectral editing technique is MEGA-PRESS, which has been diversely implemented across research sites and vendors, resulting in variations in the final resolved edited signal. In this paper, we describe an effort to develop a new universal MEGA-PRESS sequence with HERMES functionality for the major MR vendor platforms with standardized RF pulse shapes, durations, amplitudes and timings. New RF pulses were generated for the universal sequence. Phantom experiments were conducted on Philips, Siemens, GE and Canon 3 T MRI scanners using 32-channel head coils. In vivo experiments were performed on the same six subjects on Philips and Siemens scanners, and on two additional subjects, one on GE and one on Canon scanners. On each platform, edited MRS experiments were conducted with the vendor-native and universal MEGA-PRESS sequences for GABA (TE = 68 ms) and Lac editing (TE = 140 ms). Additionally, HERMES for GABA and GSH was performed using the universal sequence at TE = 80 ms. The universal sequence improves inter-vendor similarity of GABA-edited and Lac-edited MEGA-PRESS spectra. The universal HERMES sequence yields both GABA- and GSH-edited spectra with negligible levels of crosstalk on all four platforms, and with strong agreement among vendors for both edited spectra. In vivo GABA+/Cr, Lac/Cr and GSH/Cr ratios showed relatively low variation between scanners using the universal sequence. In conclusion, phantom and in vivo experiments demonstrate successful implementation of the universal sequence across all four major vendors, allowing editing of several metabolites across a range of TEs
    corecore