720 research outputs found

    Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere

    Get PDF
    International audienceThe global warming of Earth's near-surface, air and oceans in recent decades is a direct consequence of anthropogenic emission of greenhouse gases into the atmosphere such as CO2, CH4, N2O and CFCs. The CO2 emissions contribute approximately 60% to this climate change. This study investigates experimentally the aqueous carbonation mechanisms of an alkaline paper mill waste containing about 55 wt% portlandite (Ca(OH)2) as a possible mineralogical CO2 sequestration process. The overall carbonation reaction includes the following steps: (1) Ca release from portlandite dissolution, (2) CO2 dissolution in water and (3) CaCO3 precipitation. This CO2 sequestration mechanism was supported by geochemical modelling of final solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of final reaction products. According to the experimental protocol, the system proposed would favour the total capture of approx. 218 kg of CO2 into stable calcite/ton of paper waste, independently of initial CO2 pressure. The final product from the carbonation process is a calcite (ca. 100 wt%)-water dispersion. Indeed, the total captured CO2 mineralized as calcite could be stored in degraded soils or even used for diverse industrial applications. This result demonstrates the possibility of using the alkaline liquid–solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere

    Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash

    Get PDF
    International audienceThe increasing CO2 concentration in the Earth's atmosphere, mainly caused by fossil fuel combustion, has led to concerns about global warming. A technology that could possibly contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term geological storage) or the ex-situ mineral sequestration (controlled industrial reactors) of CO2. In the present study, we propose to use coal combustion fly-ash, an industrial waste that contains about 4.1 wt.% of lime (CaO), to sequester carbon dioxide by aqueous carbonation. The carbonation reaction was carried out in two successive chemical reactions, first, the irreversible hydration of lime. CaO + H2O → Ca(OH)2 second, the spontaneous carbonation of calcium hydroxide suspension. Ca(OH)2 + CO2 → CaCO3 + H2O A significant CaO–CaCO3 chemical transformation (approximately 82% of carbonation efficiency) was estimated by pressure-mass balance after 2 h of reaction at 30 °C. In addition, the qualitative comparison of X-ray diffraction spectra for reactants and products revealed a complete CaO–CaCO3 conversion. The carbonation efficiency of CaO was independent on the initial pressure of CO2 (10, 20, 30 and 40 bar) and it was not significantly affected by reaction temperature (room temperature “20–25”, 30 and 60 °C) and by fly-ash dose (50, 100, 150 g). The kinetic data demonstrated that the initial rate of CO2 transfer was enhanced by carbonation process for our experiments. The precipitate calcium carbonate was characterized by isolated micrometric particles and micrometric agglomerates of calcite (SEM observations). Finally, the geochemical modelling using PHREEQC software indicated that the final solutions (i.e. after reaction) are supersaturated with respect to calcium carbonate (0.7 ≤ saturation index ≤ 1.1). This experimental study demonstrates that 1 ton of fly-ash could sequester up to 26 kg of CO2, i.e. 38.18 ton of fly-ash per ton of CO2 sequestered. This confirms the possibility to use this alkaline residue for CO2 mitigation

    Synthesis of a Se0/Calcite Composite Using Hydrothermal Carbonation of Ca(OH)2 Coupled to a Complex Selenocystine Fragmentation

    Get PDF
    International audienceElemental selenium (Se0)/calcite composites were synthesized in a batch system by hydrothermal carbonation of calcium hydroxide under high CO2−Ar pressure (90 bar) and high temperature (90 °C) coupled to a complex selenocystine fragmentation. Under O2-poor conditions, the composite consisted predominantly of spherical, amorphous nanoparticles of elemental red selenium (<500 nm) deposited on the calcite matrix. Conversely, under O2-rich conditions, the composite consisted rod-shaped, well-crystallized microparticles of elemental gray selenium (<25 µm) dispersed in the calcite matrix. The carbonate matrix was constituted by nano- to microrhombohedral crystals (<2 µm) and micrometric agglomerates and/or aggregates (<5 µm). Our results present a new synthesis path to Se0/calcite composites, with spherical or rod-shaped Se0 morphology with high potential for medical (e.g., dietary supplement) or industrial (e.g., pigments) applications. Furthermore, this study may have implications in the field of biomineralization

    A memetic algorithm based on Artificial Bee Colony for optimal synthesis of mechanisms

    Get PDF
    En este documento se presenta una propuesta novedosa de un algoritmo híbrido modular, como herramienta para resolver problemas de ingeniería del mundo real. Se implementa y aplica un algoritmo memético, MemMABC, para la solución de dos casos de diseño de mecanismos, con el fin de evaluar su eficiencia y rendimiento. El algoritmo propuesto es simple y flexible debido a su modularidad; estas características lo vuelven altamente reutilizable para ser aplicado en una amplia gama de problemas de optimización. Las soluciones de los casos de estudio también son modulares, siguiendo un esquema de programación estructurada que incluye el uso de variables globales para la configuración, y de subrutinas para la función objetivo y el manejo de las restricciones. Los algoritmos meméticos son una buena opción para resolver problemas duros de optimización, debido a la sinergia derivada de la combinación de sus componentes: una metaheurística poblacional para búsqueda global y un método de refinamiento local. La calidad en los resultados de las simulaciones sugiere que el MemMABC puede aplicarse con éxito para la solución de problemas duros de diseño en ingeniería.In this paper a novel proposal of a modular hybrid algorithm as a tool for solving real-world engineering problems is presented. A memetic algorithm, MemMABC, is implemented with this approach and applied to solve two case studies of mechanism design, in order to evaluate its efficiency and performance. Because of its modularity, the proposed algorithm is simple and flexible; these features make it quite reusable to be applied on different optimization problems, with a wide scope. The solutions of the optimization problems are also modular, following a scheme of structured programming that includes the use of global variables for configuration, and subroutines for the objective function and the restrictions. Memetic algorithms are a good option to solve hard optimization problems, because of the synergy derived from the combination of their components: a global search population-based metaheuristic and a local refinement method. The quality of simulation results suggests that MemMABC can be successfully applied to solve hard problems in engineering design.Peer Reviewe

    Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    Get PDF
    The hydrothermal carbonation of calcium hydroxide (Ca(OH)2) at high pressure of CO2 (initial PCO2 1/4 55 bar) and moderate to high temperature (30 and 90 1C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH)2-CaCO3 conversion), a significant production rate (48 kg/m3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperature and the dissolved quantity of CO2 have a significant effect on the average particle size, specific surface area, initial rate of precipitation, and on the morphology of calcium carbonate crystals. In contrast, these PTx conditions used herein have an insignificant effect on the carbonation efficiency of Ca(OH)2. Finally, the results presented here demonstrate that nano-calcite crystals with high specific surface area (SBET 1/4 6-10m2/g) can be produced, with a high potential for industrial applications such as adsorbents and/or filler in papermaking industry

    The Gaia-ESO Survey: metallicity of the Chamaeleon I star forming region

    Get PDF
    Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star-forming region, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. 48 candidate members of Chamaeleon I have been observed with the high-resolution spectrograph UVES. We use the surface gravity, lithium line equivalent width and position in the Hertzsprung-Russell diagram to confirm the cluster members and we use the iron abundance to derive the mean metallicity of the region. Results. Out of the 48 targets, we confirm 15 high probability members. Considering the metallicity measurements for 9 of them, we find that the iron abundance of Chamaeleon I is slightly subsolar with a mean value [Fe/H]=-0.08+/-0.04 dex. This result is in agreement with the metallicity determination of other nearby star-forming regions and suggests that the chemical pattern of the youngest stars in the solar neighborhood is indeed more metal-poor than the Sun. We argue that this evidence may be related to the chemical distribution of the Gould Belt that contains most of the nearby star-forming regions and young clusters.Comment: 13 pages, 11 figures, 3 tables, Accepted for publication in Astronomy & Astrophysic

    Secretion of biologically active interferon-gamma inducible protein-10 (IP-10) by Lactococcus lactis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemokines are a large group of chemotactic cytokines that regulate and direct migration of leukocytes, activate inflammatory responses, and are involved in many other functions including regulation of tumor development. Interferon-gamma inducible-protein-10 (IP-10) is a member of the C-X-C subfamily of the chemokine family of cytokines. IP-10 specifically chemoattracts activated T lymphocytes, monocytes, and NK cells. IP-10 has been described also as a modulator of other antitumor cytokines. These properties make IP-10 a novel therapeutic molecule for the treatment of chronic and infectious diseases. Currently there are no suitable live biological systems to produce and secrete IP-10. <it>Lactococcus lactis </it>has been well-characterized over the years as a safe microorganism to produce heterologous proteins and to be used as a safe, live vaccine to deliver antigens and cytokines of interest. Here we report a recombinant strain of <it>L. lactis </it>genetically modified to produce and secrete biologically active IP-10.</p> <p>Results</p> <p>The IP-10 coding region was isolated from human cDNA and cloned into an <it>L. lactis </it>expression plasmid under the regulation of the pNis promoter. By fusion to the usp45 secretion signal, IP-10 was addressed out of the cell. Western blot analysis demonstrated that recombinant strains of <it>L. lactis </it>secrete IP-10 into the culture medium. Neither degradation nor incomplete forms of IP-10 were detected in the cell or supernatant fractions of <it>L. lactis</it>. In addition, we demonstrated that the NICE (nisin-controlled gene expression) system was able to express IP-10 "de novo" even two hours after nisin removal. This human IP-10 protein secreted by <it>L. lactis </it>was biological active as demonstrated by Chemotaxis assay over human CD3+T lymphocytes.</p> <p>Conclusion</p> <p>Expression and secretion of mature IP-10 was efficiently achieved by <it>L. lactis </it>forming an effective system to produce IP-10. This recombinant IP-10 is biologically active as demonstrated by its ability to chemoattract human CD3+ T lymphocytes. This strain of recombinant <it>L. lactis </it>represents a potentially useful tool to be used as a live vaccine <it>in vivo</it>.</p

    GSE4‐loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage

    Get PDF
    Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-β such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients
    corecore