research

Synthesis of a Se0/Calcite Composite Using Hydrothermal Carbonation of Ca(OH)2 Coupled to a Complex Selenocystine Fragmentation

Abstract

International audienceElemental selenium (Se0)/calcite composites were synthesized in a batch system by hydrothermal carbonation of calcium hydroxide under high CO2−Ar pressure (90 bar) and high temperature (90 °C) coupled to a complex selenocystine fragmentation. Under O2-poor conditions, the composite consisted predominantly of spherical, amorphous nanoparticles of elemental red selenium (<500 nm) deposited on the calcite matrix. Conversely, under O2-rich conditions, the composite consisted rod-shaped, well-crystallized microparticles of elemental gray selenium (<25 µm) dispersed in the calcite matrix. The carbonate matrix was constituted by nano- to microrhombohedral crystals (<2 µm) and micrometric agglomerates and/or aggregates (<5 µm). Our results present a new synthesis path to Se0/calcite composites, with spherical or rod-shaped Se0 morphology with high potential for medical (e.g., dietary supplement) or industrial (e.g., pigments) applications. Furthermore, this study may have implications in the field of biomineralization

    Similar works