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Abstract 

The conduction and dielectric behaviour of two different grades of natural hydraulic lime is 

presented over the frequency range 1Hz–1MHz, with measurements taken over the initial 6­

months after gauging with water. Samples containing embedded electrodes were exposed to 

both a natural atmosphere (20ºC and 65% relative humidity) and a natural atmosphere with a 

carbon dioxide concentration maintained at 400ppm which was used to accelerate the 

carbonation process. A decrease in relative dielectric permittivity and rise in conductivity, 

with increasing frequency, was observed at all stages over the time­scale presented. When 

plotted in the complex plane the impedance featured a bulk response comprising two 

depressed semicircles and a low frequency spur, the latter being associated with the 

electrode/sample interface. The complex impedance plot, together with the application of an 

equivalent circuit model indicated a dual arc feature with carbonation and hydration 

contributing to bulk impedance response. This study demonstrates the applicability of 

electrical property measurements to monitor the combined processes of hydration and 

carbonation in this group of materials. 

Keywords: Impedance spectroscopy; lime composites, hydration, carbonation, dielectric 

permittivity, conductivity. 
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1. Introduction and Background 

This paper describes the application of impedance spectroscopy to study the hardening 

processes in hydraulic lime composites. Impedance spectroscopy has been applied to a wide 

range of materials to study their structure and composition. Since its first application to 

cementitious systems [1] considerable advances have now been made in the use of impedance 

spectroscopy to study this group of materials [see, for example, 2­11]. Impedance 

measurements can be interpreted in terms of the mechanisms of hydration, reaction kinetics, 

microstructural and pore­structure development from initial mixing through setting and long­

term hardening. The influence of both chemical admixtures (e.g. accelerators, retarders) and 

mineral admixtures (e.g. fly ash, ground granulated blast­furnace slag) on the various stages 

of hydration has also been investigated using impedance spectroscopy techniques. These 

studies have also shown that the impedance response can be linked to a number of 

fundamental material properties including pore water content, pore water chemistry, porosity, 

connectivity and tortousity of the capillary pore network [7]. 

Surprisingly, little work has been directed towards the application of this testing methodology 

to hydraulic limes [12]. Whereas cement sets and hardens by chemical reaction with the 

added water (i.e. hydration), hydraulic lime gains strength by a combination of (slow) 

hydration and carbonation occurring over a much longer time scale. Pure calcium limes gain 

rigidity solely through carbonation which can be envisaged as a two stage process – the 

diffusion of atmospheric carbon dioxide into the lime paste and dissolution within the 

interstitial water phase to form a weak acid (carbonic acid) followed by the reaction of this 

acid with calcium hydroxide. These reactions are summarised in equations 1­3 below [13]: 

Ca(OH)2(s) → Ca2+ + 2OH­ (1)


CO2 + H2O → CO3
2­ + 2H+ (2)


Ca2+ + CO3
2­
→ CaCO3 (3)


As carbonation is a diffusion­based process, reaction kinetics and strength development in 

lime­based mortars are thus considerably reduced in comparison to a Portland cement­based 

mortar. 
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An understanding of the physical and microstructural changes occurring within a lime­based 

mortar is of considerable importance as these, ultimately, relate to mechanical properties [14­

16]. In the current work, samples containing embedded electrodes were manufactured from 

two grades of natural hydraulic lime (NHL) denoted NHL2 and NHL5. The temporal change 

in impedance response was measured during exposure to atmospheres with, and without, 

carbon dioxide. Lime pastes, rather than mortars, were monitored as the absence of the 

aggregate phase provided better homogeneity and a simpler system for modelling purposes. 

Electrical property measurements have the considerable advantage of allowing virtually 

continuous (if required) real­time monitoring on bulk samples at normal temperatures and 

pressures. Further, the application of impedance spectroscopy to monitor carbonation is 

timely, due to the current increasing interest of these processes in CO2 sequestration 

initiatives. There is also extensive development of techniques to monitor carbonation 

processes in the fields of cement research and subsurface applications such as nuclear 

repositories and oil well cements where such materials can be used in backfilling operations. 

2. Experimental Method 

2.1 Compositional analysis of hydraulic limes 

Two hydraulic limes (NHL2 and NHL5 noted above) and a calcium lime, designated CL90, 

were used and their analysis is given in Table 1. For the purpose of this paper, bulk oxide 

analysis was carried out by X­ray fluorescence spectroscopy calibrated for the lime oxide 

proportion. The calcium hydroxide and calcium carbonate content was determined by 

ignition at 250oC and 950oC respectively, in line with that used in the above procedure. 

2.2 Sample manufacture 

Two sample geometries were employed in this study, both containing embedded electrodes 

thereby ensuring intimate contact with the sample. Preliminary studies indicated that samples 

cast against externally placed electrodes were of limited success due to cracking (hence 

debonding) at the electrode/sample interface. Two sample types, hereinafter referred to as 

cuboidal and prismatic, were used in the study and are detailed below. 
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(a) Cuboidal Samples: this sample type comprised a cube with sides of 40mm. Within each 

specimen a pair of square electrodes, 20mm×20mm and 1mm thick, were embedded and 

positioned centrally within the cube. The separation distance between the electrodes within 

the sample was 20mm. Electrodes were manufactured from Type 316 stainless steel sheet 

and soldered to 1.6 mm diameter stainless steel wire. The wires were then pushed through 

tight fitting holes in a 5 mm thick Plexiglas sheet to maintain their orientation and separation 

while casting within the lime paste. Following casting the samples were placed in the 

environmental chamber whilst still in their mould. After a period of 7 days the samples were 

demoulded. The first measurement of impedance was taken after 21 days from the initial 

mixing. Samples of calcium lime, NHL2 and NHL5 were manufactured as cuboidal samples. 

(b) Prismatic Samples: this sample type comprised a lime­paste prism of dimensions 

40mm×40mm×60mm (length). For these samples, five faces were coated with a layer of low 

viscosity epoxy resin thereby sealing the surface and ensuring uniaxial diffusion of carbon 

dioxide through one of the 40mm×40mm faces. The samples were demoulded after an initial 

period of 7 days in an environmental chamber containing no carbon dioxide supply and the 

resin applied. The samples were then left for a further 7 days for the resin to fully harden 

before being transferred to the environmental chamber with a carbon dioxide supply, this 

equates to time = 0. Ten pairs of 10mm×10mm×1mm (thick) square, stainless steel 

electrodes were embedded within each sample. The electrodes within each pair had a 

separation distance of 10mm. Five electrode pairs were placed in two vertical rows as shown 

in the schematic in Figure 1. Within each row of electrodes, there was a 'staggered' off­set of 

5mm between adjacent pairs; furthermore, there was a 5mm off­set between the two rows. 

This arrangement of electrode pairs allowed full continuity of impedance measurements from 

0­55mm from the exposed end of the prism. A number of prisms without electrodes were 

manufactured for sectioning and chemical analysis during the experiment. Only NHL2 lime 

paste was used in the manufacture of prismatic samples. 

A water to lime ratio of 1:2 by mass was used throughout as this provided a consistency 

adequate to provide ease of compaction and embedding of the electrodes without the 

inclusion of air pockets. The lime and water were mixed in a beaker using a spatula for 10 

minutes before casting in steel moulds to form the specimens. Samples were removed from 

these moulds before impedance measurements were taken. As noted above, a number of 
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cuboidal samples were manufactured from calcium lime (CL90), however, upon drying it was 

evident that severe cracking occurred at the electrode/sample interface thereby rendering 

them unusable in this study. 

2.3 Sample exposure 

Both types of sample were exposed in Sharetree systems environmental chambers at a 

temperature of 20oC and relative humidity of 65%. The cubioidal samples were placed in a 

chamber with no external carbon dioxide supply thereby minimising the rate of carbonation. 

The prismatic samples were exposed in an environmental chamber with a carbon dioxide 

supply which was maintained at levels of 400ppm to simulate atmospheric conditions thereby 

promoting the carbonation reaction. 

2.4 Sample monitoring 

The impedance response of both sample geometries was monitored at regular intervals over a 

period of 175 days. Both the in­phase and quadrature components of the sample impedance 

were determined using a Solartron 1260 impedance analyser, with a signal amplitude of 100 

mV over the frequency range 1Hz­1MHz. Impedance values were recorded at 5 frequency 

measurements per decade. Whilst it was necessary to remove the samples from the 

environmental chamber during measurement, the duration time out of the chamber was 

considered negligible so would not affect results. The weight of the cuboidal samples was 

recorded to an accuracy of 10­4g using a Mettler Toledo AB204­S/FACT digital balance 

whilst the samples were removed from the environmental chamber for impedance 

measurements. 

The depth of carbonation was determined by sectioning the prism samples without electrodes. 

The samples were sectioned longitudinally i.e. perpendicular to the face not coated in resin. 

The depth of carbonation was detected by spraying the freshly exposed surface with a 

saturated solution of phenolphthalein indicator in ethanol. An estimation of the carbonation 

depth was then made from the colour change from clear (carbonated) to pink (uncarbonated). 
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2.5 Environmental scanning electron microscopy 

Fracture surfaces of typical microstructures found in the un­carbonated and carbonated 

regions of the hardened lime pastes were examined using a Philips Electroscan 2020 

Environmental Scanning Electron Microscope (ESEM) equipped with a gaseous ion detector. 

The chamber was evacuated in ‘wet’ mode (vacuum pressure 5 Torr) and ‘flooded’ three 

times to introduce water vapour. Images were then acquired using an accelerating voltage of 

20kV. Samples were mounted on 12 mm diameter pin­stubs coated with silver dag. Fracture 

surfaces of regions from each sample were then sputtered with gold using an Edwards sputter 

coater for a period of 4 minutes thereby enhancing contrast. 

3. Impedance analysis 

3.1 Finite element analysis of current flow 

To provide a basis for determining the conductivity and relative dielectric permittivity (or 

dielectric constant) of the samples, it was necessary to determine the current flow and 

potential distribution within the sample. As a result of the complex electrode geometry, a 

closed form solution was not readily available so a finite element analysis was used 

employing AnSys simulation software (ANSYS, Inc. Southpointe 275 Technology Drive, 

Canonsburg, PA 15317, Software Version No 11). Ansys solves three dimensional problems 

by applying Laplace's equation [17], which can be used for solving a wide range of 

continuous physical processes including the distribution of electric potential within a 

medium. For more detailed information on the solution techniques the reader is referred to 

the AnSys guides (ANSYS Theory Reference, Chapter 6, 000855. 8th Edition, SAS IP, Inc©). 

The element type used for the electrical analysis,  was a three­dimensional solid 'brick' 

element, referred to in the AnSys guide as SOLID70. Following generation of the solution, 

post processing in AnSys allows calculation of the magnitude of the resultant flux which can 

be represented in the form of vectors or contour plots. The vector and contour plots obtained 

from the cube sample geometry are shown in Figure 2 and show the field fringing effects 

around the embedded electrode system. In the current analysis, properties of the lime paste 

were assumed to be isotropic i.e. the effect of localized and temporal changes in current 

distribution are not considered in this current model. The results obtained from the model 
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were used to calculate a geometrical conversion factor, F, which allowed calculation of 

conductivity and dielectric permittivity by taking account of current flow outside of the 

volume of material directly between the electrodes being monitored. In the absence of this 

factor the calculated values of conductivity and dielectric permittivity would be 

overestimated. Values of 0.31 were obtained for the cuboidal sample. For the prismatic 

sample a value of 0.3 was used for the electrode pairs at the end positions, 0 and 45 mm, 0.25 

for the electrode pairs at the 5 and 40 mm positions and 0.22 for electrode pairs positioned 

between 10­35 mm from the exposed surface. The constant, k, used in equations 5 and 6 

below is then calculated using k = Fd/A, where d is the electrode spacing and A is electrode 

area. 

3.2 Equivalent circuit modelling 

The electrical response of the lime pastes was simulated using an equivalent circuit model in 

ZView software version 2.90 (Scribner Associates, Inc.). The circuit used is presented in 

Figure 3 and consists of resistors (R) and constant phase elements (CPE). The constant phase 

element (CPE) does not have an electrical equivalent and is a complex, frequency­dependent 

parameter defined by the relationship, equation (4), 

CPE = Ao(iω)
­n (4) 

where i =√­1, Ao is a constant and the exponent, n, has a value such that 0<n<1; if n equals 1 

then the equation is identical to that of a pure capacitor of value Ao. When a CPE, with value 

of n<1, is placed in parallel with a resistor, a Cole­Element (depressed semi­circle) is 

produced in the complex plane. The use of a CPE in place of a capacitor thus accounts for 

dielectric dispersion in the system. 

3.3 Calculation of electrical parameters 

Connection to the Solartron impedance analyser was by means of short, individually screened 

coaxial cables to the voltage High/Low and current Output/Input terminals. Open circuit and 

short circuit measurements were taken at all test frequencies; from this set of measurements, 

together with the impedance of the sample between the electrodes, the sample impedance can 
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be de­embedded from the measured impedance. However, it was found that open circuit 

impedances were significantly higher, and short circuit impedances significantly lower, than 

those recorded for the specimens indicating that the contribution of the residual cable 

impedance would be negligible. The sample impedance, Z(ω) at any frequency, ω, can be 

written as, 

Z(ω) = Z'(ω) – iZ''(ω) (5) 

where the values of Z'(ω) and Z''(ω) are the in­phase and quadrature components of the 

measured impedance. 

The relative dielectric permittivity (ε'r) and conductivity (σ) of the sample at any frequency, 

ω, are calculated using equations (6) and (7) below. In these equations, k is the factor to 

account for fringing effects for the particular electrode configuration (obtained from Ansys) 

and εo is the permittivity of a vacuum (8.854×10­12 Farads/m). 

σ (ω) =
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4. Results 

4.1 Material composition 

The oxide equivalent and derived phase composition of the NHL2 and NHL5 limes is given 

in Table 1. An analysis of the CL90 calcium lime is also included for completeness however, 

as stated earlier, cracking at the specimen/electrode interface rendered these specimens 

unusable. The NHL5 contains approximately three times more dicalcium silicate (C2S) 

compared to the NHL2 which accounts for its greater hydrolicity. Approximately 2.5 times 

more portlandite is present in the NHL2 compared to NHL5 giving it a much greater potential 

to carbonate. Interestingly, a greater quantity of calcium alumino­silicate (C2AS) was 
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detected in the NHL2. Approximately 20% calcite was present in both limes with the other 

phases in much lower amounts. 

4.2 Microstructure, carbonation and weight change 

Microstructures relating to the NHL2 and NHL5 lime pastes at 175 days in the uncarbonated 

and carbonated states are given in Figure 4 (a)­(d). It should be noted that, in this context, 

carbonated and uncarbonated relate to pastes which when sprayed with phenolphthalein 

indicator are clear (pH < 10) and pink (pH > 10) respectively. Uncarbonated lime paste was 

taken from the central region of the specimen and carbonated lime paste from approximately 

3 mm below the outer surface of the specimen. Figures 4 (a) and (b) show typical carbonated 

and uncarbonated structures of the hardened NHL2 lime pastes. There are no obvious 

differences between the two images as both contain agglomerated lime particles and high 

aspect ratio needle shaped crystals. Figures 4(c) and (d) correspond to the uncarbonated and 

carbonated structures observed for the NHL5 lime paste. High aspect ratio crystals are, 

again, observed in both images however these are approximately 1µm in length making them 

significantly smaller than those observed in the NHL2. A number of well defined angular 

crystals are distributed throughout the carbonated sample. Some of these take the form of 

hexagonal Portlandite plates and are the by­product of C2S hydration as shown in equation 

(8) below, 

2Ca2SiO4 + 4H2O → Ca3Si2O7.3H2O + Ca(OH)2 (8) 

The mass of the cuboidal specimens was recorded throughout the exposure period at the same 

time impedance measurements were taken. The average mass of the calcium lime, CL90, 

specimens at 21 and 175 days was 59.7g and 68.0g respectively; the NHL2 and NHL5 

hydraulic limes at 21 days were, respectively, 79.0g and 97.9g, and at 175 days, 82.4g and 

97.6g. The percentage change in weight throughout the monitoring period relative to the 

weight at 21 days is presented in Figure 5. The greatest increase in weight was observed in 

the CL90 followed by the natural hydraulic lime, NHL2. A small decrease in weight was 

measured for the natural hydraulic lime NHL5. The maximum percentage change in weight 

recorded for the natural hydraulic lime mortars was 4.3 % for the NHL2. The weight 
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increases are likely to be due to carbonation and also indicates that no significant evaporation 

of water from the samples has occurred during the monitoring period. 

4.3 Conductivity and Dielectric Permittivity 

As noted above, the intrinsic electrical properties of any non­magnetic material can be fully 

specified by the frequency dependent parameters, relative dielectric permittivity, εr ′(ω), and 

conductivity, σ(ω). These are determined by the polarization and conduction of bound and 

free charges within the material. If the material is heterogeneous, εr ′(ω) and σ(ω) will be 

strongly correlated to the properties of the individual components and the way in which they 

are combined. Such correlation is often manifested in the frequency domain as dispersive 

behaviour characterised by frequencies of relaxation, above which dielectric permittivity falls 

and conductivity rises. It can therefore be possible to identify various features of 

heterogeneous materials by their electrical properties provided these are observed over a wide 

enough frequency range 

The dielectric permittivity and conductivity are presented in Figure 6 for NHL2 and NHL5 

pastes, and plotted in the frequency domain. This plot represents a typical response from the 

cuboidal samples. Figure 7 presents the corresponding response from the NHL2 prismatic 

samples for electrode pairs positioned respectively at 5mm and 35mm from the exposed 

surface. All plots display a decrease in dielectric permittivity and rise in conductivity with 

increasing frequency. 

The dielectric permittivity gives a relative measure of the electric polarizability of the system 

and, at any particular frequency of applied field, quantifies the sum of all polarization 

processes operative within the material. Several superimposed mechanisms can contribute to 

polarization with each one having a characteristic relaxation frequency. In the lime pastes, it 

is evident from Figure 6 that dispersion in the dielectric permittivity exists across the entire 

frequency range under study and is indicative of a spread of relaxation frequencies. With 

reference to Figure 6, at low frequencies (<10Hz) the dielectric permittivity rises to 

anomalously high values: ∼105 for NHL2 pastes (Figure 6(a)) and ∼106 for NHL5 pastes 

(Figure 6(b)), but can be explained by the dominating influence of electrode polarization 

below this frequency. Also noticeable for both types of lime pastes is the development of a 
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small 'plateau' region over the frequency range ∼1kHz­50kHz which becomes more 

discernible with increasing hardening time. The dielectric permittivity then undergoes a 

further dispersion over the range ∼50kHz­1MHz (1MHz being the upper limit of the current 

investigation). Concerning the bulk polarization processes operative within the paste, it is 

proposed that this results from a combination of electric double­layer polarization and an 

interfacial polarization processes occurring within the paste. Both these mechanisms relax in 

the frequency range of the current investigation; however, since double­layer polarization is a 

low­frequency mechanism [18] and interfacial polarization a mid­frequency mechanism [19] 

it could be postulated that the plateau region delineates these processes. The double­layer 

process and electrode polarization effects will merge together at the low­frequency end of the 

Figure hence it is difficult to accurately identify the frequency above which double­layer 

effects start to dominate. 

Regarding the above polarization mechanisms, double layer polarization on particle surfaces 

has been known to produce substantial dielectric enhancement at low frequencies for 

colloidal suspensions [18, 20, 21] and porous materials saturated with conductive liquids 

[22], the latter using a grain consolidation model. Interfacial polarization would manifest 

itself at the pore­water/crystal boundary interfaces. Under the application of an electric field, 

charges can be blocked by internal phase boundaries leading to a separation of charge which 

will contribute to the polarizability of the sample. With the system under study, the paste can 

be considered as a two­phase system comprising solid phase (e.g. products of hydration, 

unreacted materials) and an interstitial aqueous phase; as these phases will be electrically 

dissimilar this would give rise to a Maxwell­Wagner interfacial polarization process. As the 

lime pastes increase in rigidity due to hydration (equation (8) above) the pore network will 

become more tortuous and constricted with the carbonation process (equations (1)­(3) above) 

also serving to block pore connectivity [23]; free water taken up in the chemical reactions 

will also result in an irrotational binding of water. These physio­chemical processes will 

cause an overall reduction in bulk polarisation, hence dielectric permittivity, across the entire 

frequency range. 

Conductivity quantifies the sum of all loss mechanisms operative within the system and 

represents the energy dissipated by the motion of charges in the applied field. For the lime 

pastes these losses would include the movement of free charges in the continuous, interstitial 
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aqueous phase which results from ionic conduction. However, losses associated with 

polarization processes operative within the paste will also contribute to the measured 

conductivity. Where dielectric relaxation processes are operative this would result in an 

enhancement of conductivity with increasing frequency. With reference to Figure 6, the 

conductivity decreases with time and increases with frequency across the entire frequency 

range; its response can be divided into three regions: 

(i)	 a region between 1­10Hz where the conductivity increases with increasing frequency 

(more evident in Figure 6(b) for the NHL5 paste). In this region the conductivity will 

be influenced by processes at the electrode­sample interface. 

(ii)	 a region between ∼10Hz­50kHz, where the conductivity gradually increases in a linear 

fashion; and, 

(iii)	 a region >50kHz where the dispersion in conductivity increases more markedly, again 

in a linear fashion. 

Within the frequency range ~10Hz­1MHz, it is proposed that conduction will be dominated 

by ionic conduction through the continuous interstitial aqueous phase. Superimposed on this 

mechanism will be contributions from double­layer relaxation over the range 100Hz­50kHz, 

albeit a very weak contribution, and strong contribution from interfacial polarization at 

frequencies >50kHz. As with the dielectric permittivity, the overall reduction of conductivity 

with time can be attributed to the increase in rigidity of the paste resulting from the hydration 

and carbonation processes discussed above. . 

Figures 6(a) and (b) also indicate that the conductivity and dielectric permittivity of NHL5 

lime paste is almost an order of magnitude higher than that of the NHL2. This will be as a 

result of compositional differences between the two materials (see Table 1) and consequent 

higher ionic content in the interstitial water phase within NHL5 paste, through which 

conduction occurs. Comparing Figure 6(a) and (b) it is evident that there is a more marked 

decrease in dielectric constant and conductivity over the period 21­35 days for the NHL5 

paste. The NHL5 paste has a higher proportion of C2S phase which contributes to the 

hardening process; although slow to hydrate initially, it is evident from the dielectric 

permittivity and conductivity response presented in Figure 6(b) that this reaction (equation 

(8)) begins to take effect over this time. 
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Figs. 7(a) and (b) present the dielectric permittivity and conductivity at the electrode pairs 

positioned at depths of 5mm and 35mm in the NHL2 prismatic samples. Considering the 

dielectric permittivity response, it is evident that these Figures provide more detail on the 

regions of dispersion than their cuboidal counterparts presented in Figure 6. Whereas the 

cuboidal samples will represent an overall 'bulk' response, the smaller volume of material 

probed by the electrodes in the prismatic sample will be more sensitive to physio­chemical 

changes occurring within the paste. With reference to Figure 7, the dielectric dispersion 

curves change slope at ∼102Hz, then again at ∼104Hz, thereafter the dielectric permittivity 

decreases over the remainder of the frequency range. It could be postulated that these 

frequencies delineate three polarization processes: electrode polarization dominating at 

frequencies < ∼102Hz; double­layer polarization dominating over the range ∼102 ­ 104Hz, and 

interfacial polarization dominating at frequencies > ∼104Hz which is also the frequency at 

which dispersion in conductivity is more evident. 

From Figure 7, the conductivity and dielectric permittivity at a depth of 5mm are reduced in 

comparison to the values at 35mm. This is attributed to carbonation resulting from the 

diffusion of CO2 into the surface zone 

4.4 Equivalent circuit modelling 

The complex impedance formalism for data presentation is useful in developing an equivalent 

circuit representation for the system. Figure 8(a) shows a typical response for the prismatic 

NHL2 paste after 12 days. Figures 8(b) and (c) show typical responses for the NHL2 and 

NHL5 pastes from the cuboidal samples. In these figures frequency is increasing from right 

to left across the arcs. 

Considering Figure 8, the spectra for hydraulic lime pastes can be separated into two 

overlapping arcs whose centres are displaced below the real axis: a mid­frequency arc 

developing over the frequency range ≈100Hz­100kHz and a high­frequency arc developing 

over the frequency range 100kHz­1MHz. These arcs represent the material response, with a 

small 'spur' at the right­hand­side of the plot representing the low­frequency response at the 

electrode­sample interface. As noted above, an equivalent circuit of the form shown in 

Figure 3 was applied to the data for simulation purposes. Researchers have used similar 
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equivalent circuits to represent cementitious and other ceramic materials [2­8, 18, 24­26] as it 

allows deconvolution of the resistance, R, and constant phase element parameters, Ao and n 

in equation (4) above, from both the left­ and right­ hand side of the bulk response, namely 

R1/CPE1 (high frequency) and R2/CPE2 (mid­frequency) on Figure 3, with R3/CPE3 

representing the electrode response. Table 2 presents the modelled circuit parameters for the 

bulk response presented in Figures 8(a)­(c); values for R3/CPE3 are not reported. Figure 9 

displays the temporal changes in R1 and R2 for the NHL2 and NHL5 cuboidal samples over 

the period 21 to and 175 days. These resistances will be associated with, (a) the continuous 

capillary pathways between the electrodes i.e. the percolating pores or connected porosity; 

and, (b) those capillary pores which do not connect between the electrodes i.e. the dead end 

pores and occluded porosity [27]. Thus, as the capillary pores become more tortuous and 

disconnected due to hydration and carbonation processes, these values will increase with time 

as shown in Figure 9. Further work (in combination with MIP studies) is required, however, 

to ascribe the contribution of a particular pore type (e.g. continuous, occluded) and the 

distribution of pore types to the resistance parameters R1 and R2. 

When plotted in the complex impedance plane, the dispersive and relaxation processes 

discussed in relation to Figures 6 and 7 appear to manifest themselves as a two region 

response comprising an electrode polarisation 'spur' on the extreme right of the plot (at 

frequencies < ≈100Hz) and a bulk response on the left of the cusp point. The bulk response, 

itself, displays a dual­arc behaviour. At the permittivity level (see Figure 7(b)) the weakly 

defined plateau centered around ∼10kHz is followed by a second dispersion up to 1 MHz 

which was the limit of the current investigation. This indicates the possible existence of two 

relaxation processes in addition to the diffusion limited polarization process associated with 

the electrodes. The primary region of dispersion (frequencies > ∼100Hz) which has resulted 

in two bulk arcs is viewed at the impedance level in Figure 8. 

4.5 Movement of the Carbonation Front 

Figure 10 presents a contour plot of the bulk resistivity (based on R1+R2 values) for all 

electrode pairs located in the NHL2 prismatic samples. Over the time­scale presented, two 

features are discernible, 
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(i) an overall uniform increase in resistivity with time at all electrode positions; and 

(ii) a more significant increase for electrodes positioned at 0 and 5mm from the surface 

which becomes more prominent after 61 days. 

Insets on the right of the contour plot show stained sections of the prismatic sample 

indicating the depth of carbonation at 39 and 161 days. An intense purple staining is 

observed at 39 days across the whole of the sample with only a thin 2mm carbonated zone 

present on the left hand side corresponding to the unsealed face. In comparison, white 

speckles are visible on the surface of the 161 day old section indicating greater carbonation 

throughout the entire volume. The carbonated region has grown to approximately 12 mm in 

thickness which coincides with electrodes in the 0 and 5 mm positions where high resistance 

was measured. This increase in resistance is not attributable to loss of moisture from the 

samples as their weight remains relatively constant over this period (see Figure 5). The 

deeper electrode positions will reflect the hydraulic hardening effect of the pastes, whereas 

the surface electrodes (i.e. at 0 and 5mm) will reflect a combined hardening effect of the lime 

hydraulicity and carbonation. 

6. Concluding Comments 

The change in the electrical properties of natural hydraulic lime pastes have been presented 

over a period of six months from initial gauging. Measurements have been presented in a 

range of formalisms to highlight the frequency dependence of the electrical response for this 

group of materials which included complex impedance, dielectric permittivity and 

conductivity. Regarding the complex impedance, in the Argand plot, the bulk response gave 

rise to two arcs together with a low­frequency arc associated with electrode polarization 

effects. The bulk arcs had their centres depressed below the real axis which is indicative of 

frequency­dependent behaviour of the capacitive element i.e. a constant phase element 

varying as Ao(iω)
­n . 

When plotted as the dielectric permittivity there was, what appeared to be, a single region of 

dispersion across the entire frequency range under study with a small plateau region evident 

in the range 1kHz­50kHz. It was postulated that region delineated two processes: a low­

frequency double­layer polarization process and a higher frequency interfacial mechanism. 

At this stage, it was difficult to evaluate the exact relaxation frequency for each process due 

to the upper frequency limit of the investigation and, at the low­frequency end of the 
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investigation, the increasing influence of electrode effects masking the bulk polarization 

process. The conductivity, which quantifies the sum of all the loss­processes, displayed a 

three­region response associated with electrode effects, ionic conduction and losses due to 

dispersive polarization processes. 

Considering the prismatic sample exposed to carbon dioxide, it was evident that the surface 

electrodes indicated a region of high resistivity resulting from a combination of carbonation 

and hydraulic hardening of the lime. 
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Captions for Figures


Figure 1: Electrode array embedded into NHL2 hydraulic lime prismatic sample. (a) 

schematic diagram showing positioning of electrode pairs; and (b) photograph of 

array. 

Figure 2: Solution of finite element model for 40×40×40mm cube containing 20×20mm 

electrodes embedded 20mm apart centrally (a) vector plot showing magnitude 

and direction of current flow and (b) contour plot (from section between 

electrodes) showing variation in current density. 

Figure 3: Equivalent circuit model with R1/CPE1 and R2/CPE2 representing the bulk 

response and R3/CPE3 representing the electrode response. 

Figure 4: Environmental scanning electron micrographs illustrating typical fracture 

surfaces of the uncarbonated and carbonated regions of NHL2 and NHL5 lime 

pastes (at 175 days); (a) NHL 2 uncarbonated; (b) NHL2 carbonated; (c) NHL5 

uncarbonated; and (d) NHL5 carbonated (scale bar represents 4µm). 

Figure 5: Relative change in weight for calcium lime and natural hydraulic lime, NHL2 and 

NHL5, cuboidal samples during the monitoring period (21 day weight taken as 

datum). 

Figure 6: Typical plots of dielectric permittivity and conductivity for cuboidal samples of 

(a) NHL2, and (b) NHL5, between 21 and 175 days. 

Figure 7: Typical plots of dielectric permittivity and conductivity for electrode pairs in a 

prismatic sample, (a) 5 mm location, and (b) 35 mm location, between 0 and 161 

days. 

Figure 8: Typical complex plane plot and equivalent circuit parameters from simulation (a) 

prismatic NHL2 paste (at 5mm) after 12 days; (b) cuboidal NHL2 paste after 147 

days and (c) cuboidal NHL5 paste after 147 days 
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Figure 9: Values of R1 and R2 obtained from equivalent circuit modelling of complex


plane plots obtained from (a) NHL2 and (b) NHL5 cuboidal samples.


Figure 10:	 Contour plot showing resistivity of NHL2 lime paste between electrode pairs 

embedded in the prismatic samples. Images to the right show depth of 

carbonation revealed by phenolphthalein indicator. 

Captions for Tables 

Table 1.	 Chemical composition of calcium lime CL90 and natural hydraulic limes, NHL2 

and NHL5. 

Table 2.	 Modelled circuit parameters for the bulk response presented in Figures 8(a)­(c); 

values for R3/CPE3 are not reported. 
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Table 1. Chemical composition of calcium lime CL90 and natural hydraulic limes,

NHL2 and NHL5.


Chemical composition (% w/w) CL90 NHL2 NHL5

SiO2 0.8 11.4 19.9 
Al2O3 0.1 1.7 2.0 
Fe2O3 0.1 0.5 0.7 
CaO 73.6 61.2 59.8 
MgO 0.9 2.4 1.2 
K2O 0.02 0.39 0.42 
Na2O 0.0 0.06 0.03 
SO3 0.0 1.16 0.36 
Cl 0.0 0.01 0.01 
Loss on ignition 24.4 21.2 15.4 
Total 100 100 99.78 
Insoluble residue 0.9 2.7 3.7 
Calcination loss ­ 8.4 10.2 
Soluble SO3 ­ 0.32 <0.01 
Relative density 2.24 2.4 2.69 
Soluble SiO2 ­ 5 12.5 
C2S 0.0 14.3 45.0 
Ca(OH)2 97.1 53.6 20.6 
CaCO3 0.0 21.7 23.1 
CaSO4 0.0 1.5 0.0 
C4AF 0.0 1.7 2.0 
C3A 0.0 0.7 2.1 
C2AS 0.0 3.4 2.2 
Total 97.1 99.6 98.7 
Cementation index ­ 0.3 0.78 
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Table 2. Modelled circuit parameters for the bulk response presented in Figures 8(a)­


(c); values for R3/CPE3 are not reported.


Sample Time R1 (high) R2 (mid) 
CPE1 (high) CPE2 (mid) 

(days) kΩ kΩ Ao 

(× 10­10) 

n Ao 

(× 10­9) 

n 

NHL2 12 42.2 55.7 0.549 0.83 7.71 0.66 

(prismatic 

at 5mm) 

NHL2 

(cuboidal) 

147 36.3 19.2 5.41 0.71 1.20 0.87 

NHL5 

(cuboidal) 

147 17.7 19.7 36.0 0.63 0.72 0.92 
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(a)


(b) 

Figure 1: Electrode array embedded into NHL2 hydraulic lime prismatic sample.  (a) 

schematic diagram showing positioning of electrode pairs; and (b) photograph of 

array. 
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Figure 2: Solution of finite element model for 40×40×40mm cube containing 20×20mm 

electrodes embedded 20mm apart centrally (a) vector plot showing magnitude 

and direction of current flow and (b) contour plot (from section between 

electrodes) showing variation in current density. 

Figure 3: Equivalent circuit model with R1/CPE1 and R2/CPE2 representing the bulk 

response and R3/CPE3 representing the electrode response. 
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(a) (b)


(c) (d) 

Figure 4: Environmental scanning electron micrographs illustrating typical fracture 

surfaces of the uncarbonated and carbonated regions of NHL2 and NHL5 lime 

pastes (at 175 days); (a) NHL 2 uncarbonated; (b) NHL2 carbonated; (c) NHL5 

uncarbonated; and (d) NHL5 carbonated (scale bar represents 4µm). 
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Figure 5: Relative change in weight for calcium lime and natural hydraulic lime, NHL2 and 

NHL5, cuboidal samples during the monitoring period (21 day weight taken as 

datum). 
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(a)


(b)


Figure 6: Typical plots of dielectric permittivity and conductivity for cuboidal samples of


(a) NHL2, and (b) NHL5, between 21 and 175 days. 
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(a)


(b)


Figure 7: Typical plots of dielectric permittivity and conductivity for electrode pairs in


NHL2 prismatic sample, (a) 5 mm location, and (b) 35 mm location, between 0 

and 161 days. 
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(a)


(b)


(c)


Figure 8: Typical complex plane plot and equivalent circuit parameters from simulation (a)


prismatic NHL2 paste (at 5mm) after 12 days; (b) cuboidal NHL2 paste after 147 

days and (c) cuboidal NHL5 paste after 147 days 
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(a)


(b) 

Figure 9:	 Values of R1 and R2 obtained from equivalent circuit modelling of complex 

plane plots obtained from (a) NHL2 and (b) NHL5 cuboidal samples. 
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Figure 10: Contour plot showing resistivity of NHL2 lime paste between electrode pairs 

embedded in the prismatic samples. Images to the right show depth of 

carbonation revealed by phenolphthalein indicator. 
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