972 research outputs found

    Accurate mass measurements of 26^{26}Ne, 26−30^{26-30}Na, 29−33^{29-33}Mg performed with the {\sc Mistral} spectrometer

    Full text link
    The minuteness of the nuclear binding energy requires that mass measurements be highly precise and accurate. Here we report on new measurements 29−33^{29-33}Mg and 26^{26}Na performed with the {\sc Mistral} mass spectrometer at {\sc Cern}'s {\sc Isolde} facility. Since mass measurements are prone to systematic errors, considerable effort has been devoted to their evaluation and elimination in order to achieve accuracy and not only precision. We have therefore conducted a campaign of measurements for calibration and error evaluation. As a result, we now have a satisfactory description of the {\sc Mistral} calibration laws and error budget. We have applied our new understanding to previous measurements of 26^{26}Ne, 26−30^{26-30}Na and 29,32^{29,32}Mg for which re-evaluated values are reported.Comment: submitted to Nuclear Physics

    National Space Transportation Systems Program mission report

    Get PDF
    The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras

    Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO

    Get PDF
    We present optically-pumped emission data for ZnO, showing that high excitation effects and stimulated emission / lasing are observed in nanocrystalline ZnO thin films at room temperature, although such effects are not seen in bulk material of better optical quality. A simple model of exciton density profiles is developed which explains our results and those of other authors. Inhibition of exciton diffusion in nanocrystalline samples compared to bulk significantly increases exciton densities in the former, leading, via the nonlinear dependence of emission in the exciton bands on the pump intensity, to large increases in emission and to stimulated emission

    Energy balance of a laser ablation plume expanding in a background gas

    Get PDF
    The energy balance of a laser ablation plume in an ambient gas for nanosecond pulses has been investigated on the basis of the model of Predtechensky and Mayorov (PM), which provides a relatively simple and clear description of the essential hydrodynamics. This approach also leads to an insightful description in dimensionless units of how the initial kinetic energy of the plume is dissipated into kinetic and thermal energy of the background gas. Eventually when the plume has stopped, the initial kinetic energy of the plume is converted into thermal energy of the plume and background gas

    Search for supernova-produced 60Fe in a marine sediment

    Full text link
    An 60Fe peak in a deep-sea FeMn crust has been interpreted as due to the signature left by the ejecta of a supernova explosion close to the solar system 2.8 +/- 0.4 Myr ago [Knie et al., Phys. Rev. Lett. 93, 171103 (2004)]. To confirm this interpretation with better time resolution and obtain a more direct flux estimate, we measured 60Fe concentrations along a dated marine sediment. We find no 60Fe peak at the expected level from 1.7 to 3.2 Myr ago. However, applying the same chemistry used for the sediment, we confirm the 60Fe signal in the FeMn crust. The cause of the discrepancy is discussed.Comment: 15 pages, 5 figures, submitted to PR

    Ferromagnetism in substituted zinc oxide

    Full text link
    Room-temperature ferromagnetism is observed in (110) oriented ZnO films containing 5 at % of Sc, Ti, V, Fe, Co or Ni, but not Cr, Mn or Cu ions. There are large moments, 1.9 and 0.5 muB/atom for Co- and Ti-substituted oxides, respectively. Sc-substituted ZnO shows also a moment of 0.3 muB/Sc. Magnetization is very anisotropic, with variations of up to a factor three depending on the orientation of the applied field relative to the R-cut sapphire substrates. Results are interpreted in terms of a spin-split donor impurity band model, which can account for ferromagnetism in insulating or conducting high-k oxides with concentrations of magnetic ions that lie far below the percolation threshold. The variation of the ferromagnetism with oxygen pressure used during film growth is evidence of a link between ferromagnetism and defect concentration.Comment: 15 pages, 4 figure

    Quantum chaos and nuclear mass systematics

    Get PDF
    The presence of quantum chaos in nuclear mass systematics is analyzed by considering the differences between measured and calculated nuclear masses as a time series described by the power law 1/ f^alpha. While for the liquid droplet model plus shell corrections a quantum chaotic behavior alpha approx 1 is found, errors in the microscopic mass formula have alpha approx 0.5, closer to white noise. The chaotic behavior seems to arise from many body effects not included in the mass formula.Comment: 4 pages, 6 figures, replaced to match the published versio
    • 

    corecore