=

metadata, citation and similar papers at core.ac.uk brought to you by .i CC

provided by Elsevier - Publisher Conne

DIRECT®

& SCIENCE
S PHYSICS LETTERS B

&5

ELSEVIER Physics Letters B 595 (2004) 231-236

www.elsevier.com/locate/physletb

Quantum chaos and nuclear mass systematics

Jorge G. Hirsch, Victor VelazquézAlejandro Frank

Instituto de Ciencias Nucleares, Universidad Nacional Auténoma de México, Apartado Postal 70-543, 04510 México, D.F., México
Received 3 May 2004; received in revised form 14 June 2004; accepted 18 June 2004
Available online 2 July 2004
Editor: W. Haxton

Abstract

The presence of quantum chaos in nuclear mass systenwmtoslyzed by considering the differences between measured
and calculated nuclear masses as a time series described by the powgf%awvhile for the liquid droplet model plus shell
corrections a quantum chaotic behawor: 1 is found, errors in the microscopic mass formula have 0.5, closer to white
noise. The chaotic behavior seems to arise from many body effects not included in the mass formula.
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The importance of an accurate knowledge of nu- nuclear theory is unable to answgj. For this reason
clear masses to understand diverse processes in nunuclear masses are predicted using phenomenologi-
clear physics and astrophysics is well kno\]. cal models. The finite range droplet model (FRDM),
Though tremendous progress has been made in thewhich combines a macroscopic droplet with micro-
challenging task of measuring the mass of exotic nu- scopic shell and pairing correctiofi3], has become
clei, theory is necessary to predict the mass of nuclei the de facto standard for mass formulas. A microscop-
very far from stability[2]. Understanding of the prop- ically inspired model was successfully introduced by
erties of complex nuclei in terms of the actual forces Duflo and Zuker (DZ]4]. Along the mean field model
between nucleons is a basic question which at presentit is worth to mention the powerful Skyrme—Hartree—

Fock (HFB) approach5]. All these mass formulas
can calculate and predict the masses (and often other
properties) of as many as 8979 nuclid2k There is
- a permanent search for better theoretical models that
__E-mail addresses: hirsch@nuclecu.unam.n@.G. Hirsch), reduce the difference with the experimental masses
z'/f%p;ncgcu'“nam'mw Velazquez)frank@nuclecu.unam.mx and produce reliable predictions for unstable nuclei.

1 present address: Departamento de Fisica, Facultad de Ciencias,At present, the rms error for 2135 nuclei is 674 keV

UNAM, Mexico, D.F., Mexico. for HFB, 676 keV for FRDM, and 373 keV for DZ.

0370-26931 2004 Elsevier B.MOpen access under CC BY license.
doi:10.1016/j.physletb.2004.06.068


https://core.ac.uk/display/81164643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:hirsch@nuclecu.unam.mx
mailto:vic@nuclecu.unam.mx
mailto:frank@nuclecu.unam.mx
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

232

The origin of the differences in rms errors between the
models and the possibility of reducing them are the
subject of the present investigation.

Recently, the problem of the mass deviations was
analyzed from a new angle: in Rg6] the errors
among experimental and calculated massé3]iwere
interpreted in terms of two types of contributions. The
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clarify the nature of the errors. This was achieved by
employing realistic Hamiltonians with a small random
component. Irf13] we have analyzed in detail the er-
ror distribution for the mass formulas of Mdéller et al.
[3] and found a conspicuous long range regularity that
manifests itself as a double peak in the distribution of
mass differenceld 3]. This striking non-Gaussian dis-

first one was associated with a regular part, related to tribution was found to be robust under a variety of cri-

the underlying collective dynamics (droplet model),
plus the shell energy correction, while the other was

assumed to arise from some inherent dynamics, pos-

sibly higher order interactions among nucledf§
that lead to chaotic behavior. According[i§ the lat-
ter could be interpreted as remaining signals of the

teria. By assuming a simple sinusoidal correlation, we
could empirically subtract these correlations and made
the average deviation diminish by nearly 1524].

In the present Letter we carry out a study of the
mass deviations in the Finite Range Droplet Model
(FRDM) of Mdller et al.[3], and in the microscopi-

chaotic dynamics occurring at higher energies, whose cally motivated mass formula of Dj4,15], analyzing
magnitude suggests that we have already achievedtheir correlations as time series. Two different criteria

(within a factor of 2) the maximum accessible pre-
cision in the calculation of the masses in mean-field
theories[6]. It is relevant to ask if this chaotic limit

can be confirmed by independenttechniques and, if so,

if this lower bound is valid also for mass calculations
which explicitly include residual correlations, like DZ.

The presence of chaotic motion in nuclear systems

are employed to organize the data, which render simi-
lar and consistent power laws.

To map the mass error data, which depend on the
chargeZ and neutron numbeY/, in term of variables
with the maximum possible number of nuclei along
each chain, the following &nsformation is employed

has been firmly related with the statistics of high-lying A = INt[v2(\/siné + Z cosd)],

energy leveld8,9]. Poisson distributions of normal-

ized spacings of successive nuclear or atomic excited

levels with the same spin and parity correspond to in-
tegrable classical dynamics, while Wigner's statistics
signal chaotic motion in the corresponding classical
regime[10]. Intermediate situations are more difficult

T, = Int[v2(\ cosp — Z'sing)]. )

Both A and T are, by construction, integer numbers.
To avoid introducing artificial noise, the data auodt-
ened by the interpolation of mass errors famphysical
values ofT;, 4, i.e., those withl;, even andA odd, or

to assess. Very recently a proposal has been made tovice versa. This process is necessary to eliminate the

treat the spectral fluctuatiods as discrete time series
[11]. Defining
Eyt1
O = f P(E)dE —n,
—00
with 6(E) the mean level density which allows the
mapping to dimensionless levels with unitary average

@

large number of zeroes which are induced by the trans-
formation, which create artificial high frequency noise
in the data.

We found that the best orientation, in order to have
as many isotopes as possible with the safngis
6 = 56°. With this transformation, e.g., there are 174
isotopes with?, = 0.

Fig. 1 displays the mass errolSM(A) = My —

level density, and analyzing the energy fluctuations as Mexp for 18 values ofl,, from T, = —11 to 6 for the
a discrete time series, they found that nuclear power FRDM calculations. The regularities seen in Fig. 2 of

spectra behave like /¥ noise, postulating that this

Ref.[14] as regions with the same gray tone are seen

might be a characteristic signature of generic quantum here in the different plots, as groupings of nuclei with

chaotic systems. In the present work we implement
this idea, using the /if spectral behavior as a test for
the presence of chaos in nuclear mass errors.

In [12] a systematic study of nuclear masses was
carried out using the shell model, in an attempt to

similar positive or negative mass differences, for the
sameA region. Besides the two large groups with pos-
itive and negative mass errors belaw= 50, there are
evident regions with negative errors closette= 100,
and with positive mass differences for 1604 < 200.
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Fig. 1. Mass differences from the FRDM calculations, in MeV, as
functions ofA, for 18 T, values.

Fig. 2 displays the mass errors for 18 valuesiof
for the DZ calculations. The deviations are manifestly
smaller and exhibit considerably less structure.

The discrete FourieF} transforms are calculated

as
1 AM(j) <—2m'jk)
= — ex ,

where N is the number of mass differencesV in

a given series. The parametgr makes F; dimen-
sionless. Given that it only affects the global scale
of the Fourier amplitudes, we made the simple selec-
tiony =1 MeV. The Fourier amplitudes are plotted as
functions of the logarithm of the frequengy=k/N

for the FRDM data inFig. 3 and for the Duflo and
Zuker data irFig. 4, using a log—log scale.

3

These plots have some remarkable features. As ex-

pected from a 1k“ power law, low frequencies have
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Fig. 2. Mass differen~ces frorn~ the Duflo and Zuker calculations, in
MeV, as functions of4, for 18 7, values.

the larger amplitudes. In most of the plots the largest
Fourier amplitudes are those with frequencies between
0.3 and 0.4 (log = —4 to — 3), indicating that os-
cillations with periodsAA ~ 20-50 are dominant.
This is consistent with the fitted frequencies found
in Ref. [14]. A slight rise of the amplitudes at the
larger frequencies f{ ~ 0.5, AA ~ 2) can be seen

in many plots. They represent strong fluctuations be-
tween some nuclei and their closest neighbors.

The Fourier amplitudes are consistently smaller for
the DZ data, which have also a Gaussian-like dis-
tribution of the mass differencdg43]. This indicates
that the FRDM mass differences have stronger cor-
relations, which are precisely the ones removed in
Ref.[14].

The straight lines correspond to the best fitted
slopes, in the log—log plots, of the power spectra,
that is, the squared Fourier amplitudes against the fre-
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Fig. 3. Logarithm of squared ampliles of the Fourier transforms  Fig. 4. Logarithm of squared ampliies of the Fourier transforms
of the mass differences, plotted as functions of the logarithm of the of the mass differences, plotted as functions of the logarithm of the
frequency, for 18 values, using the Mdller et al. data. frequency, for 18 values, using the Duflo and Zuker data.

quency. While the fluctuations are large, and the num-
ber of nuclei included in each chain range from a few
dozen to almost two hundred, the results are striking
and correlated with the recently proposed universal
features of quantum chagkl].

For the 18 chains listed, the slopes are

An alternative way to organize the 1654 nuclei with
measured masses is to order themlpugirofedon sin-
gle list [14], numbered in increasing order. To avoid
jumps, we have ordered the nuclei with even A fol-
lowing the increase in N-Z, and those nuclei with odd
A starting from the largest value of N-Z, and going

@ o _ on in decreasing ordeFig. 5 exhibits the mass dif-
oFrom = ~118£017.  apz =—067£0.16 ferences plotted against the order number, from 1 to
(4) 1654, taken from Moller et al. (top) and from DZ (bot-

They fluctuate around-1.2 in the FRDM data and  tom). The presence of strong correlations in the Moller
around—0.7 for the deviations found by DZ. These et al. mass differences is apparent from the plot. Re-
slopes convey our main result. The former is consistent gions with large positive or negative errors are clearly
with a frequency dependence pf ! characteristic of  seen. In the data of Duflo and Zuker the distribution
quantum chaos while the latter suggest a tendency to-of errors is closer to the horizontal axis, and the corre-
wards a more random behavior characteristic of white lations are less pronounced, although not completely
noise. absent.
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Fig. 5. Mass differences plotted as an ordered list, taken from FRDM Fig. 6. Log—log plot of the squaredrgplitudes of the Fourier trans-
(top), and from Duflo and Zuker (bottom). forms of the mass differences, as functions of the order parameter
(top). Data from FRDM (top) and from Duflo and Zuker (bottom).
The ordering provides a single-valued function,
whose Fourier transform can be calculated. The
squared amplitudes are presentefig 6. The slopes

are shell corrections a quantum chaotic behavice 1 is

found, errors in the microscopic mass formula have
a,(:zF;DM =—-0.91+0.05, a ~ 0.5, closer to white noise. Given that both mod-

a|(322> — _0.51+0.05, ®) trer:s attempt to descr_ibe the same set of experimental
asses, our analysis suggests that quantum fluctua-
for the FRDM and DZ mass differences. tions in the mass differences arising from subtraction
While this ordering is quite different from tha of the regular behavior provided by the liquid droplet
chains, the slopes are very similar. model plus shell corrections, may have their origin in

To understand the possible origin of these spec- an incomplete consideration of many body quantum
tral distributions, it is worth recalling that, while the correlations, which are partially included in the calcu-
FRDM calculations involve a liquid droplet model lations of Duflo and Zuker. This interpretation would
plus mean field corrections, including deformed single imply that it is in principle possible to reduce the lim-
particle energies through the Strutinsky method and its in accuracy mentioned if7] for the calculation of
pairing [3], the DZ calculations depend on the num- nuclear masses. It remains to be seen whether a ro-
ber of valence proton and neutron particles and holes, bust picture of the coexistence of regular and chaotic
including quadratic effects motivated by the micro- motion emerge from these studies and whether a quan-
scopic Hamiltoniarjl6]. The present results show that titative means to evaluate their relative importance can
the DZ formalism produces patterns that are locally be formulated.
smooth approximations to the data, and therefore give
some information on the intrinsic nature of the data
fluctuations.

We arrive at the conclusion that the chaoticity dis-
cussed in[6], according to the criteria put forward
in [11], seems indeed to be present in the deviations Relevant comments by R. Bijker, O. Bohigas,
induced by calculations using the Mdller et al. lig- J. Dukelsky, J. Flores, J.M. Gomez, P. Leboeuf,
uid droplet mass formula, while it tends to diminish R. Molina, S. Pittel, A. Raga, P. van Isacker, and
in the microscopically motivated calculations of Du- A. Zuker are gratefully acknowledged. This work was
flo and Zuker. While for the liquid droplet model plus  supported in part by Conacyt, México.
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