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Abstract

The presence of quantum chaos in nuclear mass systematics is analyzed by considering the differences between meas
and calculated nuclear masses as a time series described by the power law 1/f α . While for the liquid droplet model plus she
corrections a quantum chaotic behaviorα ≈ 1 is found, errors in the microscopic mass formula haveα ≈ 0.5, closer to white
noise. The chaotic behavior seems to arise from many body effects not included in the mass formula.
 2004 Elsevier B.V.
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The importance of an accurate knowledge of
clear masses to understand diverse processes in
clear physics and astrophysics is well known[1].
Though tremendous progress has been made in
challenging task of measuring the mass of exotic
clei, theory is necessary to predict the mass of nu
very far from stability[2]. Understanding of the prop
erties of complex nuclei in terms of the actual forc
between nucleons is a basic question which at pre
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nuclear theory is unable to answer[2]. For this reason
nuclear masses are predicted using phenomeno
cal models. The finite range droplet model (FRDM
which combines a macroscopic droplet with mic
scopic shell and pairing corrections[3], has become
the de facto standard for mass formulas. A microsc
ically inspired model was successfully introduced
Duflo and Zuker (DZ)[4]. Along the mean field mode
it is worth to mention the powerful Skyrme–Hartre
Fock (HFB) approach[5]. All these mass formula
can calculate and predict the masses (and often o
properties) of as many as 8979 nuclides[2]. There is
a permanent search for better theoretical models
reduce the difference with the experimental mas
and produce reliable predictions for unstable nuc
At present, the rms error for 2135 nuclei is 674 k
for HFB, 676 keV for FRDM, and 373 keV for DZ
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The origin of the differences in rms errors between
models and the possibility of reducing them are
subject of the present investigation.

Recently, the problem of the mass deviations w
analyzed from a new angle: in Ref.[6] the errors
among experimental and calculated masses in[3] were
interpreted in terms of two types of contributions. T
first one was associated with a regular part, relate
the underlying collective dynamics (droplet mode
plus the shell energy correction, while the other w
assumed to arise from some inherent dynamics,
sibly higher order interactions among nucleons[6],
that lead to chaotic behavior. According to[7] the lat-
ter could be interpreted as remaining signals of
chaotic dynamics occurring at higher energies, wh
magnitude suggests that we have already achie
(within a factor of 2) the maximum accessible p
cision in the calculation of the masses in mean-fi
theories[6]. It is relevant to ask if this chaotic limi
can be confirmed by independent techniques and, i
if this lower bound is valid also for mass calculatio
which explicitly include residual correlations, like DZ

The presence of chaotic motion in nuclear syste
has been firmly related with the statistics of high-lyi
energy levels[8,9]. Poisson distributions of norma
ized spacings of successive nuclear or atomic exc
levels with the same spin and parity correspond to
tegrable classical dynamics, while Wigner’s statist
signal chaotic motion in the corresponding class
regime[10]. Intermediate situations are more difficu
to assess. Very recently a proposal has been mad
treat the spectral fluctuationsδn as discrete time serie
[11]. Defining

(1)δn =
En+1∫

−∞
ρ̃(E) dE − n,

with ρ̃(E) the mean level density which allows th
mapping to dimensionless levels with unitary avera
level density, and analyzing the energy fluctuations
a discrete time series, they found that nuclear po
spectra behave like 1/f noise, postulating that thi
might be a characteristic signature of generic quan
chaotic systems. In the present work we implem
this idea, using the 1/f spectral behavior as a test f
the presence of chaos in nuclear mass errors.

In [12] a systematic study of nuclear masses w
carried out using the shell model, in an attempt
clarify the nature of the errors. This was achieved
employing realistic Hamiltonians with a small rando
component. In[13] we have analyzed in detail the e
ror distribution for the mass formulas of Möller et a
[3] and found a conspicuous long range regularity t
manifests itself as a double peak in the distribution
mass differences[13]. This striking non-Gaussian dis
tribution was found to be robust under a variety of c
teria. By assuming a simple sinusoidal correlation,
could empirically subtract these correlations and m
the average deviation diminish by nearly 15%[14].

In the present Letter we carry out a study of t
mass deviations in the Finite Range Droplet Mo
(FRDM) of Möller et al. [3], and in the microscopi
cally motivated mass formula of DZ[4,15], analyzing
their correlations as time series. Two different crite
are employed to organize the data, which render s
lar and consistent power laws.

To map the mass error data, which depend on
chargeZ and neutron numberN , in term of variables
with the maximum possible number of nuclei alo
each chain, the following transformation is employed

Ã = Int
[√

2(N sinθ +Z cosθ)
]
,

(2)T̃z = Int
[√

2(N cosθ −Z sinθ)
]
.

Both Ã and T̃z are, by construction, integer numbe
To avoid introducing artificial noise, the data aresoft-
ened by the interpolation of mass errors forunphysical
values ofT̃z, Ã, i.e., those withT̃z even andÃ odd, or
vice versa. This process is necessary to eliminate
large number of zeroes which are induced by the tra
formation, which create artificial high frequency no
in the data.

We found that the best orientation, in order to ha
as many isotopes as possible with the sameT̃z, is
θ = 56◦. With this transformation, e.g., there are 1
isotopes withT̃z = 0.

Fig. 1 displays the mass errors�M(Ã) = Mth −
Mexp for 18 values ofT̃z, from T̃z = −11 to 6 for the
FRDM calculations. The regularities seen in Fig. 2
Ref. [14] as regions with the same gray tone are s
here in the different plots, as groupings of nuclei w
similar positive or negative mass differences, for
sameÃ region. Besides the two large groups with po
itive and negative mass errors below̃A = 50, there are
evident regions with negative errors close toÃ = 100,
and with positive mass differences for 150< Ã < 200.
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Fig. 1. Mass differences from the FRDM calculations, in MeV,
functions ofÃ, for 18 T̃z values.

Fig. 2 displays the mass errors for 18 values ofT̃z

for the DZ calculations. The deviations are manifes
smaller and exhibit considerably less structure.

The discrete FourierFk transforms are calculate
as

(3)Fk = 1√
N

∑
j

�M(j)

γ
exp

(−2πijk

N

)
,

whereN is the number of mass differences�M in
a given series. The parameterγ makesFk dimen-
sionless. Given that it only affects the global sc
of the Fourier amplitudes, we made the simple se
tion γ = 1 MeV. The Fourier amplitudes are plotted
functions of the logarithm of the frequencyf = k/N

for the FRDM data inFig. 3 and for the Duflo and
Zuker data inFig. 4, using a log–log scale.

These plots have some remarkable features. As
pected from a 1/kα power law, low frequencies hav
Fig. 2. Mass differences from the Duflo and Zuker calculations
MeV, as functions ofÃ, for 18 T̃z values.

the larger amplitudes. In most of the plots the larg
Fourier amplitudes are those with frequencies betw
0.3 and 0.4 (logf = −4 to − 3), indicating that os-
cillations with periods�Ã ≈ 20–50 are dominan
This is consistent with the fitted frequencies fou
in Ref. [14]. A slight rise of the amplitudes at th
larger frequencies (f ≈ 0.5, �Ã ≈ 2) can be seen
in many plots. They represent strong fluctuations
tween some nuclei and their closest neighbors.

The Fourier amplitudes are consistently smaller
the DZ data, which have also a Gaussian-like d
tribution of the mass differences[13]. This indicates
that the FRDM mass differences have stronger c
relations, which are precisely the ones removed
Ref. [14].

The straight lines correspond to the best fit
slopes, in the log–log plots, of the power spec
that is, the squared Fourier amplitudes against the



234 J.G. Hirsch et al. / Physics Letters B 595 (2004) 231–236

s
the

m-
ew
ing
rsal

e
tent

y to-
hite

s
the

ith

id
ol-
dd
ng
-

to
t-
ller
Re-
rly

ion
rre-
tely
Fig. 3. Logarithm of squared amplitudes of the Fourier transform
of the mass differences, plotted as functions of the logarithm of
frequency, for 18T̃z values, using the Möller et al. data.

quency. While the fluctuations are large, and the nu
ber of nuclei included in each chain range from a f
dozen to almost two hundred, the results are strik
and correlated with the recently proposed unive
features of quantum chaos[11].

For the 18 chains listed, the slopes are

(4)

α
(1)
FRDM = −1.18± 0.17, α

(1)
DZ = −0.67± 0.16.

They fluctuate around−1.2 in the FRDM data and
around−0.7 for the deviations found by DZ. Thes
slopes convey our main result. The former is consis
with a frequency dependence off −1 characteristic of
quantum chaos while the latter suggest a tendenc
wards a more random behavior characteristic of w
noise.
Fig. 4. Logarithm of squared amplitudes of the Fourier transform
of the mass differences, plotted as functions of the logarithm of
frequency, for 18T̃z values, using the Duflo and Zuker data.

An alternative way to organize the 1654 nuclei w
measured masses is to order them in abustrofedon sin-
gle list [14], numbered in increasing order. To avo
jumps, we have ordered the nuclei with even A f
lowing the increase in N–Z, and those nuclei with o
A starting from the largest value of N–Z, and goi
on in decreasing order.Fig. 5 exhibits the mass dif
ferences plotted against the order number, from 1
1654, taken from Möller et al. (top) and from DZ (bo
tom). The presence of strong correlations in the Mö
et al. mass differences is apparent from the plot.
gions with large positive or negative errors are clea
seen. In the data of Duflo and Zuker the distribut
of errors is closer to the horizontal axis, and the co
lations are less pronounced, although not comple
absent.
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Fig. 5. Mass differences plotted as an ordered list, taken from FR
(top), and from Duflo and Zuker (bottom).

The ordering provides a single-valued functio
whose Fourier transform can be calculated. T
squared amplitudes are presented inFig. 6. The slopes
are

α
(2)
FRDM = −0.91± 0.05,

(5)α
(2)
DZ = −0.51± 0.05,

for the FRDM and DZ mass differences.
While this ordering is quite different from thẽA

chains, the slopes are very similar.
To understand the possible origin of these sp

tral distributions, it is worth recalling that, while th
FRDM calculations involve a liquid droplet mod
plus mean field corrections, including deformed sin
particle energies through the Strutinsky method
pairing [3], the DZ calculations depend on the nu
ber of valence proton and neutron particles and ho
including quadratic effects motivated by the micr
scopic Hamiltonian[16]. The present results show th
the DZ formalism produces patterns that are loca
smooth approximations to the data, and therefore
some information on the intrinsic nature of the d
fluctuations.

We arrive at the conclusion that the chaoticity d
cussed in[6], according to the criteria put forwar
in [11], seems indeed to be present in the deviati
induced by calculations using the Möller et al. li
uid droplet mass formula, while it tends to dimini
in the microscopically motivated calculations of D
flo and Zuker. While for the liquid droplet model plu
Fig. 6. Log–log plot of the squared amplitudes of the Fourier trans
forms of the mass differences, as functions of the order param
(top). Data from FRDM (top) and from Duflo and Zuker (bottom

shell corrections a quantum chaotic behaviorα ≈ 1 is
found, errors in the microscopic mass formula ha
α ≈ 0.5, closer to white noise. Given that both mo
els attempt to describe the same set of experime
masses, our analysis suggests that quantum flu
tions in the mass differences arising from subtract
of the regular behavior provided by the liquid drop
model plus shell corrections, may have their origin
an incomplete consideration of many body quant
correlations, which are partially included in the calc
lations of Duflo and Zuker. This interpretation wou
imply that it is in principle possible to reduce the lim
its in accuracy mentioned in[7] for the calculation of
nuclear masses. It remains to be seen whether a
bust picture of the coexistence of regular and cha
motion emerge from these studies and whether a q
titative means to evaluate their relative importance
be formulated.
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