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Abstract The energy balance of a laser ablation plume in an
ambient gas for nanosecond pulses has been investigated on
the basis of the model of Predtechensky and Mayorov (PM),
which provides a relatively simple and clear description of
the essential hydrodynamics. This approach also leads to an
insightful description in dimensionless units of how the ini-
tial kinetic energy of the plume is dissipated into kinetic and
thermal energy of the background gas. Eventually when the
plume has stopped, the initial kinetic energy of the plume is
converted into thermal energy of the plume and background
gas.

1 Introduction

Pulsed laser deposition (PLD) and laser-generated nanopar-
ticle formation often take place in a background gas [1, 2].
Even though these techniques have been applied extensively
for a number of years, there is no complete picture of the
dynamics of a laser ablation plume in a background gas.
PLD of a film by nanosecond lasers is an extremely com-
plex process, which runs through several stages from ini-
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tial laser irradiation of a solid target, material ejection and
transfer through vacuum or a background gas to a substrate
[3–5]. A more comprehensive knowledge of plume dynam-
ics in a background gas is clearly desirable, in particular be-
cause most of the existing treatments are limited to one or
two target materials into a single background gas [6–9]. The
expansion of a silicon ablation plume in helium and argon
gases has been modeled quite comprehensively, but the re-
sults are difficult to apply to other plume-background gas
systems [8].

In the present work we have applied the gas-dynamical
model of Predtechensky and Mayorov (PM) [10] for the sil-
ver ablation plume in different gases. The work is partly a
continuation of previous work on the expansion of a plume
[11, 12] and partly a new analysis of the energy balance of
the plume expansion. In the PM-model all plume material is
located in a thin, expanding spherical shell which sweeps up
the background gas on a thin shell on the outer surface of the
plume shell [11]. Both shells expand against the pressure of
the background gas (Fig. 1). Eventually, the increased mass
of the swept-up gas and the plume mass lead to a decelera-
tion of the contact front.

As demonstrated in Refs. [11, 12] the PM-model can
be solved analytically such that, for example, the stopping
range can be determined. The PM-model can also be uti-
lized to describe the distribution of energy in thermal and
kinetic components of the plume in a simple manner and
shows quite good agreement with the analysis by Arnold
et al. [9].

2 The theoretical model

At the termination of the laser pulse the plume energy is pre-
dominantly thermal, but the energy is rapidly converted to
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Fig. 1 Geometry of the plume expansion in the PM-model. Red color:
target and plume material at the radius R(t). Light blue color: back-
ground gas. Dark blue: swept-up background gas on the shell of radius
R(t)

kinetic energy during the early stage expansion. The main
assumptions for the PM-model, that the initial plume en-
ergy is all kinetic and that the expansion is 3-dimensional
after a short, initial 1-dimensional expansion, are largely ful-
filled [11].

The momentum equation for an infinitesimally thin,
hemispherical gas layer at R containing all the mass of the
plume as well as the swept-up gas (Fig. 1) is

d

dt

[(
Mp + 2

3
πρgR

3
)

u

]
= −2πR2pg, (1)

where pg is the gas pressure, ρg is the gas density, Mp the
mass of the plume and the radial velocity of the plume/gas
layer at time t is u(t) = dR/dt . The equation can be
solved analytically with the change of variables, d/dt =
u(R)d/dR as in [10], but here we express (1) in terms of
dimensionless variables [11]:

d

dτ

[(
1 + ξ3)η] = −3ξ2, (2)

where the dimensionless plume front position is

ξ = A−1/3R, (3a)

the dimensionless time is

τ = A−1/3cgt, (3b)

and the dimensionless velocity is

η = dξ/dτ = 1/cg(dR/dt) = u/cg. (3c)

The initial, dimensionless velocity is then

η0 = u0/cg, (3d)

where u0 = u(t = 0) is the initial plume front velocity.
The characteristic velocity cg = √

kBT /mg (kB is Boltz-
mann’s constant, T is the ambient gas temperature and mg

the atomic/molecular mass of background gas). The para-
meter A, which is given by

A = 3Mp/(2πρg), (4)

is determined by the condition that the mass of displaced
gas is equal to the mass of the ablation plume. Equation (2)
has an analytical solution which accounts fairly well for the
expansion from nearly-free propagation of the plume close
to the target, through a regime of point-blast-wave behav-
ior, to the point where the plume comes to a complete halt.
The dimensionless position as a function of time agrees well
with experimental data for silver ions expanding in argon,
oxygen and xenon gas [11]. The model has also provided
a good description of the influence of substrate temperature
on the plume behavior for complex oxides in an oxygen at-
mosphere [12–14]. Results with a PM-model modified to a
1-dimensional expansion were also obtained for nanoparti-
cles produced by fs-laser ablation [15].

3 Energy balance of the plume expansion

Since we have assumed that the thermal energy at the initial
expansion is negligible, the kinetic energy of the shell with
the plume mass Mp at the start of the expansion and at time
t with a velocity u0 , respectively, is

E0 = 1

2
Mpu2

0 (5a)

and

Ep,k(t) = 1

2
Mpu2(t). (5b)

The kinetic energy of the swept-up gas at time t is

Eg,k(t) = 1

2

(∫ R(t)

0
2πr2ρg dr

)
u2(t)

= 1

3
πρgR

3(t)u2(t). (6)

For the final energy Etot at time t we obtain

Etot(t) = Ep,k(t) + Eg,k(t) + Ep+g,th(t), (7)

such that the energy is the sum of the kinetic energy of the
plume, Ep,k, the kinetic energy of the swept-up gas, Eg,k

and the internal, thermal energy of the plume and the swept-
up gas Ep+g,th.

The initial energy, Ein, of the system is the sum of the ini-
tial energy of the plume, E0, and the internal energy Eg,int,
which initially is stored in that part of the background gas (at
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rest) which has been swept up during the plume expansion
up to time t :

Ein = E0 + Eg,int
(
R(t)

)
, (8)

Eg,int
(
R(t)

) =
∫

pg dV

γg − 1
=

2
3πpgR

3(t)

γg − 1
(9)

where γg is the adiabatic constant of the background gas.
For the total energy balance we now need the work, Lext,

made by the external pressure during the expansion:

Lext(t) = −
∫ R(t)

0
2πr2pg dr = −2

3
πpgR

3(t). (10)

Since the extra energy of the system at time t originates from
the external work on the system, the total energy balance is
thus

Efin(t) − Ein = Lext(t). (11)

We will now for simplicity convert the energies to dimen-
sionless quantities by dividing all energies with the initial
plume energy E0 such that

ε0 = E0/E0 = 1, (12a)

the dimensionless, kinetic energy of the plume at time τ

εp,k(t) = Ep,k/E0 = η2(τ )

η2
0

, (12b)

the dimensionless, kinetic energy of the swept-up gas

εg,k(t) = Eg,k/E0 = ξ3(τ )
η2(τ )

η2
0

, (12c)

the dimensionless, internal energy of the swept-up gas

εg,int(τ ) = Eg,int/E0 = 2

(γg − 1)

ξ3

η2
0

(12d)

and finally dimensionless work made by the external pres-
sure

Λext = Lext/E0 = −2
ξ3

η2
0

. (12e)

The energy balance expressed in dimensionless units is
now

Efin(t) − Ein

E0
= εfin − εin = Λext, (13)

which can be brought into the following form:

[
εp,k(τ ) + εg,k(τ ) + εp+g,th(τ )

] − [
1 + εg,int(τ )

]
= Λext(τ ), (14)

such that the excess thermal energy can be determined as

εth = εp+g,th(τ ) − εg,int(τ )

= 1 − (
1 + ξ3(τ )

)η2(τ )

η2
0

− 2
ξ3

η2
0

. (15)

These equations provide us with the kinetic energy of the
plume (see (12b)), the kinetic energy of the swept-up gas
(see (12c)) as well as the total excess thermal energy of the
plume and swept-up gas (see (15)) as a function of time.
However, it is important to note that the PM-treatment does
not allow us to distinguish between the thermal energy of the
plume and the swept-up gas in contrast to the treatment by
Arnold et al. [9]. Nevertheless, most of the important issues
are comprised by the PM-model.

The dimensionless energies as a function of dimension-
less time τ are shown in Fig. 2 for η0 = 40.8 (which corre-
sponds to the case also treated by Arnold et al. in his Figs. 2
and 3 [9]). The kinetic energy of the plume is initially con-
stant for the nearly-free expansion and falls then gradually
off, until the plume has stopped completely. The point at
which the dimensionless plume front position ξ = 1 in the
PM-model, is where the plume mass is equal to the mass of
the displaced background gas (see (3)–(4)). It is also in the
center of the point-blast-wave regime [11], and is also ex-
actly where the kinetic energy of the plume equals that of
the swept-up gas. The kinetic energy of the plume decreases
monotonically, as determined by the velocity of the front in
the PM-model (see (12b)). Equations (12b) and (12c) also
show that the two contributions of kinetic energy are always
equal at ξ = 1, independent of the specific target-gas inter-
action parameters, e.g. the initial front velocity u0.

Fig. 2 The components of the dimensionless energy ε (see (12)
and (15)) as a function of the dimensionless time τ (see (3b)). εpk ,
the kinetic energy of the plume, (see (12b)), εg,k, kinetic energy of the
background gas (see (12c)), εth excess thermal energy of the plume and
the background gas (see (15)). The time for ξ = 1 in the PM-model is
indicated as well (vf /cg = 31.6 and γg = 5/3 as in Ref. [9])
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The thermal dimensionless (excess) energy is about 1/2
of the total energy at ξ = 1 (which can be seen from (15)
since the last term on the right-hand side is of the order
2/1600 = 1/800). It means that at ξ = 1 approximately one-
half of the total energy is converted to thermal energy. At the
stopping, nearly almost energy is thermal (which is also seen
from (15) for η = 0). The solid line includes the work made
by the background gas, which means that the dimensionless
thermal energy terminates at a point slightly below unity.
Actually, if the work done by the external pressure is disre-
garded, the thermal dimensionless energy becomes exactly
unity.

4 Comparison with the model by Arnold et al.: the
expansion

The most comprehensive model for a plume expansion in
a background gas, is the one by Arnold et al. who treat a
specific case with a system of equations for the motion of the
plume, an internal shock wave moving towards the center, an
external shock wave moving in front of the contact surface
and the background gas [9].

In order to compare the expansion dynamics from the
PM-model we have changed the variables into those from
the model of Arnold et al. for the specific system considered
in Ref. [9]. The dimensionless time τA in Arnold’s model is

τA =
√

5

3

(
2π

16

v2
f

c2
0

)− 1
3

τ (16)

and the distance

ξA =
(

2π

16

v2
f

c2
0

)− 1
3

ξ, (17)

where vf is the initial expansion velocity in Arnold’s model,
both quantities with an exponent of (−1/3).

The motion of the contact boundary for Arnold’s sys-
tem is shown together with the curve from the PM-model
in Fig. 3. The contact boundary, i.e. the surface between the
inner and outer shock region, is seen to collapse after the
stopping, whereas the PM-model solely describes the slow-
ing down to the end of the expansion. The overall agreement
between the two models is surprisingly good, even though
the PM-model is much simpler. The stopping distance and
time are fairly similar, even though the PM-model overes-
timates the plume distance at the intermediate stage around
ξ = 1, since it does not include the loss of energy to the in-
ternal shock wave.

Fig. 3 Expansion distance ξA as a function of time τA in the units from
Ref. [9]. Parameters from Fig. 2. τA = 0.149τ (see (16)), ξA = 0.115ξ

(see (17))

5 Comparison with the model of Arnold et al.: energy
balance

The model of Arnold et al. [9] accounts for the detailed dis-
tribution of energy into the kinetic and thermal components
of the plume as well as the background gas, whereas the PM-
model solely gives the total thermal energy of the plume and
that of the background gas.

In Fig. 4 the kinetic energy of the plume (a), the total
thermal energy (b) and the kinetic energy of the background
gas (c) are shown from Arnold’s model together with the re-
sults for the PM-model scaled to Arnold’s time τA. The ki-
netic energy of the plume calculated from the PM-model is
very close to that from Arnold et al. calculated as the sum of
the kinetic energy of the plume and the energy of the internal
shock wave. The thermal energy from the PM-model is sub-
stantially higher than the thermal energy from the internal
and external shock wave from Arnold’s model in the final
stage except around the stopping. In contrast, the kinetic en-
ergy of the background gas is lower in the PM-model than
in Arnold’s model. This deviation is caused by the genera-
tion of the external shockwave from thermal energy at the
contact boundary, whereas all the swept-up mass in the PM-
model remains in the shell.

6 Discussion

The decisive feature in the PM-model is the compression
of the plume mass and the swept-up background gas into
an infinitesimally thin shell. This trick makes it possible
to solve the hydrodynamic equations analytically, but it in-
volves some problems. In principle, the interior behind the
shell of the sphere is empty in the PM-model. In reality,
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Fig. 4 Dimensionless energies with the same parameters as in Figs. 2
and 3. (a) Kinetic energy from the PM-model compared with the plume
energy and the internal shock wave energy from Ref. [9]. (b) Thermal
energy from the PM-model compared with thermal energy from the
internal and external shockwave from Ref. [9]. (c) Kinetic energy of the
background gas from the PM-model compared with the kinetic energy
of the external shockwave

the space inside the sphere is dilute, but not empty [7, 9,
12]. However, a model with the plume mass distributed in-
side the shell becomes far more complex, and in view of

the satisfactory agreement with the more complete model of
Arnold et al. [9], there is hardly any reason to extend the
PM-model.

Around and after the stopping of the plume the energy
balance of the system becomes difficult to handle. It is not
included in the PM-model, and also for other models the
predictions are not accurate around the stopping distance [9,
16]. In the late stage, the diffusion of particles out of the
plume volume becomes gradually more important [4, 5, 7,
11, 17].

7 Conclusion

The energy balance of a plume expansion in a background
gas can be described in a surprisingly simple way by the
PM-model. The equations for the kinetic energy of the
plume, the compressed background gas and the excess
thermal energy of the system can be solved analytically
and provide us with an instructive scheme for the plume-
background gas interactions. In the point-blast-wave regime
around the dimensionless expansion radius ξ = 1, the ki-
netic energy of the plume is exactly equal to kinetic en-
ergy of the swept-up background gas. At this point also
the thermal energy of the system is approximately equal
to the sum of the kinetic energy. With increasing time both
components of kinetic energy become gradually converted
into excess thermal energy of the plume and background
gas.
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