1,669 research outputs found

    Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass

    Get PDF
    At the transition from a static to a dynamic deformation regime of a shear band in bulk metallic glasses, stress transients in terms of overshoots are observed. We interpret this phenomenon with a repeated shear-melting transition and are able to access a characteristic time for a liquidlike to solidlike transition in the shear band as a function of temperature, enabling us to understand why shear bands arrest during inhomogenous serrated flow in bulk metallic glasses

    Ensemble versus individual system in quantum optics

    Get PDF
    Modern techniques allow experiments on a single atom or system, with new phenomena and new challenges for the theoretician. We discuss what quantum mechanics has to say about a single system. The quantum jump approach as well as the role of quantum trajectories are outlined and a rather sophisticated example is given.Comment: Fundamental problems in quantum theory workshop, invited lecture. 11 pages Latex + 7 figures. To appear in Fortschr. d. Physi

    Multi-dimensional laser spectroscopy of exciton-polaritons with spatial light modulators

    Full text link
    We describe an experimental system that allows one to easily access the dispersion curve of exciton-polaritons in a microcavity. Our approach is based on two spatial light modulators (SLM), one for changing the excitation angles (momenta), and the other for tuning the excitation wavelength. We show that with this setup, an arbitrary number of states can be excited accurately and that re-configuration of the excitation scheme can be done at high speed.Comment: 4 pages, 5 figure

    A hybrid camphor-camphene wax material for studies on self-propelled motion.

    Get PDF
    A new material that combines self-propelled motion with wax-like mechanical properties and can be formed into non-trivial shapes is presented

    Determination of the Carrier-Envelope Phase of Few-Cycle Laser Pulses with Terahertz-Emission Spectroscopy

    Full text link
    The availability of few-cycle optical pulses opens a window to physical phenomena occurring on the attosecond time scale. In order to take full advantage of such pulses, it is crucial to measure and stabilise their carrier-envelope (CE) phase, i.e., the phase difference between the carrier wave and the envelope function. We introduce a novel approach to determine the CE phase by down-conversion of the laser light to the terahertz (THz) frequency range via plasma generation in ambient air, an isotropic medium where optical rectification (down-conversion) in the forward direction is only possible if the inversion symmetry is broken by electrical or optical means. We show that few-cycle pulses directly produce a spatial charge asymmetry in the plasma. The asymmetry, associated with THz emission, depends on the CE phase, which allows for a determination of the phase by measurement of the amplitude and polarity of the THz pulse

    Fiber transport of spatially entangled photons

    Get PDF
    Entanglement in the spatial degrees of freedom of photons is an interesting resource for quantum information. For practical distribution of such entangled photons it is desireable to use an optical fiber, which in this case has to support multiple transverse modes. Here we report the use of a hollow-core photonic crystal fiber to transport spatially entangled qubits.Comment: 4 pages, 4 figure

    Magnetoelastic coupling in triangular lattice antiferromagnet CuCrS2

    Full text link
    CuCrS2 is a triangular lattice Heisenberg antiferromagnet with a rhombohedral crystal structure. We report on neutron and synchrotron powder diffraction results which reveal a monoclinic lattice distortion at the magnetic transition and verify a magnetoelastic coupling. CuCrS2 is therefore an interesting material to study the influence of magnetism on the relief of geometrical frustration.Comment: 6 pages, 6 figures, 1 tabl
    • 

    corecore