210 research outputs found

    Student Perceptions of the Impact of Kinesthetics in the Choral Rehearsal

    Get PDF
    Using movement activities, or kinesthetics, in the choral rehearsal is a studied and established teaching technique that some music educators regularly employ. The movement-based strategies have their roots in the work of Jaques-Dalcroze, Laban, and Kodály, as well as other choral pedagogues of the 20th century that have built on their foundation. However, upon literature review, few studies have been done to establish the student perspective regarding the use of movement in the choral rehearsal. Three research questions guided this qualitative, action research study: 1) Do students have a positive or negative perception of the use of kinesthetics during the choral rehearsal?; 2) Do students find the use of kinesthetics in the choral rehearsal beneficial to their vocal development?; and 3) Do students find that the use of kinesthetics impacts their understanding of the music they are learning? Student surveys, video recordings of rehearsals, and three semi-structured student interviews provided the data. Triangulation of data across these three data sources uncovered four themes: 1) active and engaged students, 2) growth in singing, 3) kinesthetic connections, and 4) occasional obstacles. While opinions were not unanimous, students generally viewed kinesthetics positively and beneficial to developing their voice. Many students also found movement helpful in their understanding of the music. Using movement activities in the choral rehearsal may not be for everyone, but they have power to transform the choral rehearsal experience into something more student-centered, engaging, and enjoyable

    Transonic cryogenic test section for the Goettingen tube facility

    Get PDF
    The design of modern aircraft requires the solution of problems related to transonic flow at high Reynolds numbers. To investigate these problems experimentally, it is proposed to extend the Ludwieg tube facility by adding a transonic cryogenic test section. After stating the requirements for such a test section, the technical concept is briefly explained and a preliminary estimate of the costs is given

    The Venetian Gondolier : Barcarolle

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/3043/thumbnail.jp

    Report of the Coding Committee of the Association for European Paediatric Cardiology

    Get PDF
    IN 1999 AND EARLY 2000, THE ASSOCIATION FOR European Paediatric Cardiology published the European Paediatric Cardiac Code as independent but linked Short and Long Lists, containing 650 and 3876 primary terms respectively. The historical background and rationale for development of this coding system has been previously detailed, but essentially it followed a series of meeting of the coding committee of the Association between 1997-1999, during which a pre-existing Long List was adopted and then used to create the condensed Short List. The system was published as the recommended standard coding system for use across Europe, covering the diagnosis and therapy of children with congenital and acquired cardiac disease. The scope of the lists was to encompass the needs of all those involved with such patients, from the fetal cardiologist through to the specialist in adult congenital heart disease; and from the general paediatric cardiologist and cardiac surgeon, to those specialising in transcatheter interventions, paediatric electrophysiology, and paediatric echocardiographers. In addition, the code was crossmapped to the 9th and 10th revisions of the International Classification of Diseases ("ICD-9” and "ICD-10”) provided by the World Health Organisation in order to facilitate returns to central government, a requirement in most countries. In so doing, it was hoped to address the concerns of many centres that such information submitted by professional coding staff was often inaccurate due to the complex nature of congenital cardiac disease, together with the limited scope and vague terminology of the International listing

    The nomenclature, definition and classification of cardiac structures in the setting of heterotaxy

    Get PDF
    AbstractIn 2000, The International Nomenclature Committee for Pediatric and Congenital Heart Disease was established. This committee eventually evolved into the International Society for Nomenclature of Paediatric and Congenital Heart Disease. The working component of this international nomenclature society has been The International Working Group for Mapping and Coding of Nomenclatures for Paediatric and Congenital Heart Disease, also known as the Nomenclature Working Group. The Nomenclature Working Group created the International Paediatric and Congenital Cardiac Code, which is available for free download from the internet at [http://www.IPCCC.NET].In previous publications from the Nomenclature Working Group, unity has been produced by cross-mapping separate systems for coding, as for example in the treatment of the functionally univentricular heart, hypoplastic left heart syndrome, or congenitally corrected transposition. In this manuscript, we review the nomenclature, definition, and classification of heterotaxy, also known as the heterotaxy syndrome, placing special emphasis on the philosophical approach taken by both the Bostonian school of segmental notation developed from the teachings of Van Praagh, and the European school of sequential segmental analysis. The Nomenclature Working Group offers the following definition for the term "heterotaxy": "Heterotaxy is synonymous with 'visceral heterotaxy' and 'heterotaxy syndrome'. Heterotaxy is defined as an abnormality where the internal thoraco-abdominal organs demonstrate abnormal arrangement across the left-right axis of the body. By convention, heterotaxy does not include patients with either the expected usual or normal arrangement of the internal organs along the left-right axis, also known as 'situs solitus', nor patients with complete mirror-imaged arrangement of the internal organs along the left-right axis also known as 'situs inversus'." "Situs ambiguus is defined as an abnormality in which there are components of situs solitus and situs inversus in the same person. Situs ambiguus, therefore, can be considered to be present when the thoracic and abdominal organs are positioned in such a way with respect to each other as to be not clearly lateralised and thus have neither the usual, or normal, nor the mirror-imaged arrangements."The heterotaxy syndrome as thus defined is typically associated with complex cardiovascular malformations. Proper description of the heart in patients with this syndrome requires complete description of both the cardiac relations and the junctional connections of the cardiac segments, with documentation of the arrangement of the atrial appendages, the ventricular topology, the nature of the unions of the segments across the atrioventricular and the ventriculoarterial junctions, the infundibular morphologies, and the relationships of the arterial trunks in space. The position of the heart in the chest, and the orientation of the cardiac apex, must also be described separately. Particular attention is required for the venoatrial connections, since these are so often abnormal. The malformations within the heart are then analysed and described separately as for any patient with suspected congenital cardiac disease. The relationship and arrangement of the remaining thoraco-abdominal organs, including the spleen, the lungs, and the intestines, also must be described separately, because, although common patterns of association have been identified, there are frequent exceptions to these common patterns. One of the clinically important implications of heterotaxy syndrome is that splenic abnormalities are common. Investigation of any patient with the cardiac findings associated with heterotaxy, therefore, should include analysis of splenic morphology. The less than perfect association between the state of the spleen and the form of heart disease implies that splenic morphology should be investigated in all forms of heterotaxy, regardless of the type of cardiac disease. The splenic morphology should not be used to stratify the form of disease within the heart, and the form of cardiac disease should not be used to stratify the state of the spleen. Intestinal malrotation is another frequently associated lesion that must be considered. Some advocate that all patients with heterotaxy, especially those with isomerism of the right atrial appendages or asplenia syndrome, should have a barium study to evaluate for intestinal malrotation, given the associated potential morbidity. The cardiac anatomy and associated cardiac malformations, as well as the relationship and arrangement of the remaining thoraco-abdominal organs, must be described separately. It is only by utilizing this stepwise and logical progression of analysis that it becomes possible to describe correctly, and to classify properly, patients with heterotaxy

    Classification of Ventricular Septal Defects for the Eleventh Iteration of the International Classification of Diseases—Striving for Consensus: A Report From the International Society for Nomenclature of Paediatric and Congenital Heart Disease

    Get PDF
    The definition and classification of ventricular septal defects have been fraught with controversy. The International Society for Nomenclature of Paediatric and Congenital Heart Disease is a group of international specialists in pediatric cardiology, cardiac surgery, cardiac morphology, and cardiac pathology that has met annually for the past 9 years in an effort to unify by consensus the divergent approaches to describe ventricular septal defects. These efforts have culminated in acceptance of the classification system by the World Health Organization into the 11th Iteration of the International Classification of Diseases. The scheme to categorize a ventricular septal defect uses both its location and the structures along its borders, thereby bridging the two most popular and disparate classification approaches and providing a common language for describing each phenotype. Although the first-order terms are based on the geographic categories of central perimembranous, inlet, trabecular muscular, and outlet defects, inlet and outlet defects are further characterized by descriptors that incorporate the borders of the defect, namely the perimembranous, muscular, and juxta-arterial types. The Society recognizes that it is equally valid to classify these defects by geography or borders, so the emphasis in this system is on the second-order terms that incorporate both geography and borders to describe each phenotype. The unified terminology should help the medical community describe with better precision all types of ventricular septal defects

    Nomenclature for Pediatric and Congenital Cardiac Care: Unification of Clinical and Administrative Nomenclature – The 2021 International Paediatric and Congenital Cardiac Code (IPCCC) and the Eleventh Revision of the International Classification of Diseases (ICD-11)

    Get PDF
    Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code ( IPCCC ) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases ( ICD-11 ). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC . The International Society for Nomenclature of Paediatric and Congenital Heart Disease ( ISNPCHD ), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature . This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature. The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC , as IPCCC continues to evolve
    corecore