1,616 research outputs found

    Barriers to energy efficiency improvement: Empirical evidence from small-and-medium sized enterprises in China

    Get PDF
    This paper analyzes barriers for energy efficiency investments for small-and medium-sized enterprises (SMEs) in China. Based on a survey of 480 SMEs in Zhejiang Province, this study assesses financial, informational, and organizational barriers for energy efficiency investments in the SME sector. The conventional view has been that the lack of appropriate financing mechanisms particularly hinders SMEs to adopt cost-effective energy efficiency measures. As such, closing the financing gap for SMEs is seen as a prerequisite in order to promote energy efficiency in the sector. The econometric estimates of this study, however, suggest that access to information is an important determinant of investment outcomes, while this is less clear with respect to financial and organizational factors. More than 40 percent of enterprises in the sample declared that that they are not aware of energy saving equipments or practices in their respective business area, indicating that there are high transaction costs for SMEs to gather, assess, and apply information about energy saving potentials and relevant technologies. One implication is that the Chinese government may assume an active role in fostering the dissemination of energy-efficiency related information in the SME sector. --energy efficiency,SMEs,China,energy policies,information access

    Big Data Dreams and Reality in Shenzhen: An Investigation of Smart City Implementation in China

    Get PDF
    Chinese cities are increasingly using digital technologies to address urban problems and govern society. However, little is known about how this digital transition has been implemented. This study explores the introduction of digital governance in Shenzhen, one of China's most advanced smart cities. We show that, at the local level, the successful implementation of digital systems faces numerous hurdles in long-standing data management and bureaucratic practices that are at least as challenging as the technical problems. Furthermore, the study finds that the digital systems in Shenzhen entail a creeping centralisation of data that potentially turns lower administrative government units into mere users of the city-level smart platforms rather than being in control of their own data resources. Smart city development and big data ambitions thereby imply shifting stakeholder relations at the local level and also pull non-governmental stakeholders, such as information technology companies and research institutions, closer to new data flows and smart governance systems. The findings add to the discussion of big data-driven smart systems and their implications for governance processes in an authoritarian context

    Kinetics and crystallization path of a Fe-based metallic glass alloy

    Get PDF
    The thermal stability and the quantification of the different transformation processes involved in the overall crystallization of the Fe50Cr15Mo14C15B6 amorphous alloy were investigated by several characterization techniques. Formation of various metastable and stable phases during the devitrification process in the sequence a-Fe, ¿-Cr6Fe18Mo5, M23(C,B)6, M7C3, ¿-Fe3Mo3C and FeMo2B2 (with M = Fe, Cr, Mo), was observed by in-situ synchrotron high energy X-ray diffraction and in-situ transmission electron microscopy. By combining these techniques with differential scanning calorimetry data, the crystallization states and their temperature range of stability under continuous heating were related with the evolution of the crystallized fraction and the phase sequence as a function of temperature, revealing structural and chemical details of the different transformation mechanisms.Postprint (published version

    Effect of off-stoichiometric compositions on microstructures and phase transformation behavior in Ni-Cu-Pd-Ti-Zr-Hf high entropy shape memory alloys

    Get PDF
    High entropy shape memory alloys (HE-SMAs) show reversible martensitic phase transformations at elevated temperatures. HE-SMAs were derived from binary NiTi, to which the elements Cu, Pd, Zr and Hf are added. They represent ordered complex solid solutions. Their high temperature phase is of B2 type, where the added elements occupy sites in the Ni-(Cu, Pd) and Ti-sub-lattices (Zr, Hf). In the present study, advanced microstructural and thermal characterization methods were used to study the effects of the additional alloy elements on microstructures and phase transformations. The ratios of Ni-equivalent (Ni, Cu, Pd) and Ti-equivalent (Ti, Zr, Hf) elements in HE-SMAs were varied to establish systems that correspond to stoichiometric, under- and over-stoichiometric binary alloys. It is shown that basic microstructural features of cast and heat-treated HE-SMAs are inherited from the nine binary X–Y subsystems (X: Ni, Cu, Pd; Y: Ti, Zr, Hf). The phase transition temperatures that characterize the martensitic forward and reverse transformations depend on the concentrations of all alloy elements. The data obtained demonstrate how martensite start temperatures are affected by deviations from the composition of an ideal stoichiometric B2 phase. The findings are discussed in the light of previous work on the concentration dependence of SMA transformation temperatures, and directions for the development of new shape memory alloy compositions are proposed. © 2020 The Author

    Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude

    Get PDF
    Despite decades of research on the physiology and biochemistry of nitrate/nitrite-respiring microorganisms, little is known regarding their metabolic response to temperature, especially under in situ conditions. The temperature regulation of microbial communities that mediate anammox and denitrification was investigated in near shore permeable sediments at polar, temperate, and subtropical sites with annual mean temperatures ranging from -5 to 23 degrees C. Total N-2 production rates were determined using the isotope pairing technique in intact core incubations under diffusive and simulated advection conditions and ranged from 2 to 359 mu mol N m(-2) d(-1). For the majority of sites studied, N-2 removal was 2-7 times more rapid under simulated advective flow conditions. Anammox comprised 6-14% of total N-2 production at temperate and polar sites and was not detected at the subtropical site. Potential rates of denitrification and anammox were determined in anaerobic slurries in a temperature gradient block incubator across a temperature range of -1 degrees C to 42 degrees C. The highest optimum temperature (T-opt) for denitrification was 36 degrees C and was observed in subtropical sediments, while the lowest T-opt of 21 degrees C was observed at the polar site. Seasonal variation in the T-opt was observed at the temperate site with values of 26 and 34 degrees C in winter and summer, respectively. The T-opt values for anammox were 9 and 26 degrees C at the polar and temperate sites, respectively. The results demonstrate adaptation of denitrifying communities to in situ temperatures in permeable marine sediments across a wide range of temperatures, whereas marine anammox bacteria may be predominately psychrophilic to psychrotolerant. The adaptation of microbial communities to in situ temperatures suggests that the relationship between temperature and rates of N removal is highly dependent on community structure

    Deformation-Induced Martensite: A New Paradigm for Exceptional Steels

    Get PDF
    Atom-probe tomography (APT) and synchrotron X-ray diffraction (XRD) were combined to study the carbon supersaturation of ferrite for two pearlitic steel-wire compositions, eutectoid and hypereutectoid. The samples were cold-drawn at different strains up to true drawing strains for the eutectoid steel and the hypereutectoid steel, respectively. The wire diameters range from 1.7 mm down to 0.058 mm for the eutectoid steel and from 0.54 mm down to 0.02 mm for the hypereutectoid steel. The findings reveal that cold-drawing of pearlitic steel wires leads to a carbon-supersaturated ferrite causing a spontaneous tetragonal distortion of the ferrite unit cell through a strain-induced deformation driven martensitic transformation. We fi nd that the drawing process induced a significant increase in the carbon content inside the originally nearcarbon-free ferrite until a steady state is approached at drawing strains larger than ca. 4 for the wires. The change of carbon concentration in the ferrite grains during the drawing process is closely related to the tetragonal distortion of the ferrite unit cell

    Impact of Hemlock Woolly Adelgid (Hemiptera: Adelgidae) Infestation on the Jasmonic Acid-Elicited Defenses of Tsuga canadensis (Pinales: Pinaceae)

    Get PDF
    Hemlock woolly adelgid is an invasive piercing-sucking insect in eastern North America, which upon infestation of its main host, eastern hemlock (‘hemlock’), improves attraction and performance of folivorous insects on hemlock. This increased performance may be mediated by hemlock woolly adelgid feeding causing antagonism between the the jasmonic acid and other hormone pathways. In a common garden experiments using hemlock woolly adelgid infestation and induction with methyl jasmonate (MeJA) and measures of secondary metabolite contents and defense-associated enzyme activities, we explored the impact of hemlock woolly adelgid feeding on the local and systemic induction of jasmonic acid (JA)-elicited defenses. We found that in local tissue hemlock woolly adelgid or MeJA exposure resulted in unique induced phenotypes, whereas the combined treatment resulted in an induced phenotype that was a mixture of the two individual treatments. We also found that if the plant was infested with hemlock woolly adelgid, the systemic response of the plant was dominated by hemlock woolly adelgid, regardless of whether MeJA was applied. Interestingly, in the absence of hemlock woolly adelgid, hemlock plants had a very weak systemic response to MeJA. We conclude that hemlock woolly adelgid infestation prevents systemic induction of JA-elicited defenses. Taken together, compromised local JA-elicited defenses combined with weak systemic induction could be major contributors to increased folivore performance on hemlock woolly adelgid-infested hemlock

    A Model-Based Analysis of GC-Biased Gene Conversion in the Human and Chimpanzee Genomes

    Get PDF
    GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available. © 2013 Capra et al

    Natural-abundance radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt marsh sediments

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 70 (2006): 1761-1771, doi:10.1016/j.gca.2005.12.020.The natural abundance of radiocarbon (14C) provides unique insight into the source and cycling of sedimentary organic matter. Radiocarbon analysis of bacterial phospholipid lipid fatty acids (PLFAs) in salt-marsh sediments of southeast Georgia (USA) – one heavily contaminated by petroleum residues – was used to assess the fate of petroleum-derived carbon in sediments and incorporation of fossil carbon into microbial biomass. PLFAs that are common components of eubacterial cell membranes (e.g., branched C15 and C17, 10-methyl-C16) were depleted in 14C in the contaminated sediment (mean Δ14C value of +25 ± 19 ‰ for bacterial PLFAs) relative to PLFAs in uncontaminated “control” sediment (Δ14C = +101 ± 12‰). We suggest that the 14C-depletion in bacterial PLFAs at the contaminated site results from microbial metabolism of petroleum and subsequent incorporation of petroleum-derived carbon into bacterial membrane lipids. A mass balance calculation indicates that 6-10% of the carbon in bacterial PLFAs at the oiled site could derive from petroleum residues. These results demonstrate that even weathered petroleum may contain components of sufficient lability to be a carbon source for biomass production by marsh sediment microorganisms. Furthermore, a small but significant fraction of fossil carbon is assimilated even in the presence of a much larger pool of presumably more-labile and faster-cycling carbon substrates.This study was supported by Georgia Sea Grant (RR100-221/926784), the National Science Foundation (OCE-9911678) and NOSAMS (thanks to J. M. Hayes)
    corecore