256 research outputs found
Vibronic resonances facilitate excited state coherence in light harvesting proteins at room temperature
Until recently it was believed that photosynthesis, a fundamental process for
life on earth, could be fully understood with semi-classical models. However,
puzzling quantum phenomena have been observed in several photosynthetic
pigment-protein complexes, prompting questions regarding the nature and role of
these effects. Recent attention has focused on discrete vibrational modes that
are resonant or quasi-resonant with excitonic energy splittings and strongly
coupled to these excitonic states. Here we unambiguously identify excited state
coherent superpositions in photosynthetic light-harvesting complexes using a
new experimental approach. Decoherence on the timescale of the excited state
lifetime allows low energy (56 cm-1) oscillations on the signal intensity to be
observed. In conjunction with an appropriate model, these oscillations provide
clear and direct experimental evidence that the persistent coherences observed
require strong vibronic mixing among excited states
Two-Player Reachability-Price Games on Single-Clock Timed Automata
We study two player reachability-price games on single-clock timed automata.
The problem is as follows: given a state of the automaton, determine whether
the first player can guarantee reaching one of the designated goal locations.
If a goal location can be reached then we also want to compute the optimum
price of doing so. Our contribution is twofold. First, we develop a theory of
cost functions, which provide a comprehensive methodology for the analysis of
this problem. This theory allows us to establish our second contribution, an
EXPTIME algorithm for computing the optimum reachability price, which improves
the existing 3EXPTIME upper bound.Comment: In Proceedings QAPL 2011, arXiv:1107.074
A Study of the Abrasion of Squeegees Used in Screen Printing and Its Effect on Performance with Application in Printed Electronics
This article presents a novel method for accelerated wear of squeegees used in screen printing and describes the development of mechanical tests which allow more in-depth measurement of squeegee properties. In this study, squeegees were abraded on the screen press so that they could be used for subsequent print tests to evaluate the effect of wear on the printed product. Squeegee wear was found to vary between different squeegee types and caused increases in ink transfer and wider printed features. In production this will lead to greater ink consumption, cost per unit and a likelihood of product failure. This also has consequences for the production of functional layers, etc., used in the construction of printed electronics. While more wear generally gave greater increases in ink deposition, the effect of wear differed, depending on the squeegee. There was a correlation between the angle of the squeegee wear and ink film thickness from a worn squeegee. An ability to resist flexing gave a high wear angle and presented a sharper edge at the squeegee/screen interface thus mitigating the effect of wear. There was also a good correlation between resistance to flexing and ink film thickness for unworn squeegees, which was more effective than a comparison based on Shore A hardness. Squeegee indentation at different force levels gave more information than a standard Shore A hardness test and the apparatus used was able to reliably measure reductions in surface hardness due to solvent absorption. Increases in ink deposition gave lower resistance in printed silver lines; however, the correlation between the amount of ink deposited and the resistance, remained the same for all levels of wear, suggesting that the wear regime designed for this study did not induce detrimental print defects such as line breakages
Performance Evaluation of Components Using a Granularity-based Interface Between Real-Time Calculus and Timed Automata
To analyze complex and heterogeneous real-time embedded systems, recent works
have proposed interface techniques between real-time calculus (RTC) and timed
automata (TA), in order to take advantage of the strengths of each technique
for analyzing various components. But the time to analyze a state-based
component modeled by TA may be prohibitively high, due to the state space
explosion problem. In this paper, we propose a framework of granularity-based
interfacing to speed up the analysis of a TA modeled component. First, we
abstract fine models to work with event streams at coarse granularity. We
perform analysis of the component at multiple coarse granularities and then
based on RTC theory, we derive lower and upper bounds on arrival patterns of
the fine output streams using the causality closure algorithm. Our framework
can help to achieve tradeoffs between precision and analysis time.Comment: QAPL 201
On-the-fly Uniformization of Time-Inhomogeneous Infinite Markov Population Models
This paper presents an on-the-fly uniformization technique for the analysis
of time-inhomogeneous Markov population models. This technique is applicable to
models with infinite state spaces and unbounded rates, which are, for instance,
encountered in the realm of biochemical reaction networks. To deal with the
infinite state space, we dynamically maintain a finite subset of the states
where most of the probability mass is located. This approach yields an
underapproximation of the original, infinite system. We present experimental
results to show the applicability of our technique
Distances for Weighted Transition Systems: Games and Properties
We develop a general framework for reasoning about distances between
transition systems with quantitative information. Taking as starting point an
arbitrary distance on system traces, we show how this leads to natural
definitions of a linear and a branching distance on states of such a transition
system. We show that our framework generalizes and unifies a large variety of
previously considered system distances, and we develop some general properties
of our distances. We also show that if the trace distance admits a recursive
characterization, then the corresponding branching distance can be obtained as
a least fixed point to a similar recursive characterization. The central tool
in our work is a theory of infinite path-building games with quantitative
objectives.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Computing Distances between Probabilistic Automata
We present relaxed notions of simulation and bisimulation on Probabilistic
Automata (PA), that allow some error epsilon. When epsilon is zero we retrieve
the usual notions of bisimulation and simulation on PAs. We give logical
characterisations of these notions by choosing suitable logics which differ
from the elementary ones, L with negation and L without negation, by the modal
operator. Using flow networks, we show how to compute the relations in PTIME.
This allows the definition of an efficiently computable non-discounted distance
between the states of a PA. A natural modification of this distance is
introduced, to obtain a discounted distance, which weakens the influence of
long term transitions. We compare our notions of distance to others previously
defined and illustrate our approach on various examples. We also show that our
distance is not expansive with respect to process algebra operators. Although L
without negation is a suitable logic to characterise epsilon-(bi)simulation on
deterministic PAs, it is not for general PAs; interestingly, we prove that it
does characterise weaker notions, called a priori epsilon-(bi)simulation, which
we prove to be NP-difficult to decide.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Is mindfulness Buddhist? (and why it matters).
Modern exponents of mindfulness meditation promote the therapeutic effects of "bare attention"--a sort of non-judgmental, non-discursive attending to the moment-to-moment flow of consciousness. This approach to Buddhist meditation can be traced to Burmese Buddhist reform movements of the first half of the 20th century, and is arguably at odds with more traditional TheravÄda Buddhist doctrine and meditative practices. But the cultivation of present-centered awareness is not without precedent in Buddhist history; similar innovations arose in medieval Chinese Zen (Chan) and Tibetan Dzogchen. These movements have several things in common. In each case the reforms were, in part, attempts to render Buddhist practice and insight accessible to laypersons unfamiliar with Buddhist philosophy and/or unwilling to adopt a renunciatory lifestyle. In addition, these movements all promised astonishingly quick results. And finally, the innovations in practice were met with suspicion and criticism from traditional Buddhist quarters. Those interested in the therapeutic effects of mindfulness and bare attention are often not aware of the existence, much less the content, of the controversies surrounding these practices in Asian Buddhist history
Testing Reactive Probabilistic Processes
We define a testing equivalence in the spirit of De Nicola and Hennessy for
reactive probabilistic processes, i.e. for processes where the internal
nondeterminism is due to random behaviour. We characterize the testing
equivalence in terms of ready-traces. From the characterization it follows that
the equivalence is insensitive to the exact moment in time in which an internal
probabilistic choice occurs, which is inherent from the original testing
equivalence of De Nicola and Hennessy. We also show decidability of the testing
equivalence for finite systems for which the complete model may not be known
- âŠ