368 research outputs found

    Infrared Emission by Dust Around lambda Bootis Stars: Debris Disks or Thermally Emitting Nebulae?

    Full text link
    We present a model that describes stellar infrared excesses due to heating of the interstellar (IS) dust by a hot star passing through a diffuse IS cloud. This model is applied to six lambda Bootis stars with infrared excesses. Plausible values for the IS medium (ISM) density and relative velocity between the cloud and the star yield fits to the excess emission. This result is consistent with the diffusion/accretion hypothesis that lambda Bootis stars (A- to F-type stars with large underabundances of Fe-peak elements) owe their characteristics to interactions with the ISM. This proposal invokes radiation pressure from the star to repel the IS dust and excavate a paraboloidal dust cavity in the IS cloud, while the metal-poor gas is accreted onto the stellar photosphere. However, the measurements of the infrared excesses can also be fit by planetary debris disk models. A more detailed consideration of the conditions to produce lambda Bootis characteristics indicates that the majority of infrared-excess stars within the Local Bubble probably have debris disks. Nevertheless, more distant stars may often have excesses due to heating of interstellar material such as in our model.Comment: 10 pages, 5 figures, 4 tables, accepted by ApJ, emulateap

    Production of microemulsion by membrane emulsification: Comparison of empty ceramic tube membrane and membrane equipped with static turbulence promoters

    Get PDF
    Membrane emulsification (ME) is a relatively new technique for the highly controlled production of particulates, which helps to obtain a narrower distribution compared to other emulsification techniques such as homogenizers or ultrasound. Benefits of membrane emulsification for food applications include the low shear properties and the uniform size distribution. In this process, the dispersed phase (oil) is pressed through the pores of a microporous membrane directly into the continuous phase (water) flowing tangentially to the membrane surface. The purpose of the emulsification experimentations was to find and model operating conditions of the operation. In laboratory experiments from conventional, commercial grade sunflower oil (dispersed phase) and from distilled water (solid phase), emulsions were prepared. The ceramic tube membrane with nominal pore size of 1.4 ÎĽm was used in the experiments (ZrO2). In order to increase the shear-stress near the membrane wall (influence the characteristics of the flow regime of the continuous phase), a kind of self-fabricated helical-shaped-ribbon reducer was installed inside the tube membrane

    SPITZER/IRAC-MIPS Survey of NGC2451A and B: Debris Disks at 50-80 million years

    Full text link
    We present a Spitzer IRAC and MIPS survey of NGC 2451 A and B, two open clusters in the 50-80 Myr age range. We complement these data with extensive ground-based photometry and spectroscopy to identify the cluster members in the Spitzer survey field. We find only two members with 8 micron excesses. The incidence of excesses at 24 microns is much higher, 11 of 31 solar-like stars and 1 of 7 early-type (A) stars. This work nearly completes the debris disk surveys with Spitzer of clusters in the 30-130 Myr range. This range is of inte rest because it is when large planetesimal collisions may have still been relatively common (as indicated by the one that led to the formation of the Moon during this period of the evolution of the Solar System). We review the full set of surveys and find that there are only three possible cases out of about 250 roughly solar-mass stars where very large excesses suggest that such collisions have occurred recently.Comment: Accepted for publication in ApJ. 25 pages 17 figure

    Breathing Spots in a Reaction-Diffusion System

    Full text link
    A quasi-2-dimensional stationary spot in a disk-shaped chemical reactor is observed to bifurcate to an oscillating spot when a control parameter is increased beyond a critical value. Further increase of the control parameter leads to the collapse and disappearance of the spot. Analysis of a bistable activator-inhibitor model indicates that the observed behavior is a consequence of interaction of the front with the boundary near a parity breaking front bifurcation.Comment: 4 pages RevTeX, see also http://chaos.ph.utexas.edu/ and http://t7.lanl.gov/People/Aric

    The nearby eclipsing stellar system delta Velorum - I. Origin of the infrared excess from VISIR and NACO imaging

    Get PDF
    - Context: The triple stellar system delta Vel system presents a significant infrared excess, whose origin is still being debated. A large infrared bow shock has been discovered using Spitzer/MIPS observations. Although it appears as a significant contributor to the measured IR excess, the possibility exists that a circumstellar IR excess is present around the stars of the system. - Aims: The objective of the present VISIR and NACO observations is to identify whether one of the stars of the delta Vel system presents a circumstellar photometric excess in the thermal IR domain and to quantify it. - Methods: We observed delta Vel using the imaging modes of the ESO/VLT instruments VISIR (in BURST mode) and NACO to resolve the A-B system (0.6" separation) and obtain the photometry of each star. We also obtained one NACO photometry epoch precisely at the primary (annular) eclipse of delta Vel Aa by Ab. - Results: Our photometric measurements with NACO (2.17 mic), complemented by the existing visible photometry allowed us to reconstruct the spectral energy distribution of the three stars. We then compared the VISIR photometry (8.6-12.8 mic) to the expected photospheric emission from the three stars at the corresponding wavelengths. - Conclusions: We can exclude the presence of a circumstellar thermal infrared excess around delta Vel A or B down to a few percent level. This supports the conclusions of Gaspar et al. (2008) that the IR excess of delta Vel has an interstellar origin, although a cold circumstellar disk could still be present. In addition, we derive the spectral types of the three stars Aa, Ab, and B (respectively A2IV, A4V and F8V), and we estimate the age of the system around 400-500 Myr.Comment: 8 pages, 9 figures, A&A, in pres

    Forming the first planetary systems: debris around Galactic thick disc stars

    Get PDF
    The thick disc contains stars formed within the first Gyr of Galactic history, and little is known about their planetary systems. The Spitzer MIPS instrument was used to search 11 of the closest of these old low-metal stars for circumstellar debris, as a signpost that bodies at least as large as planetesimals were formed. A total of 22 thick disc stars has now been observed, after including archival data, but dust is not found in any of the systems. The data rule out a high incidence of debris among star systems from early in the Galaxy's formation. However, some stars of this very old population do host giant planets, at possibly more than the general incidence among low-metal Sun-like stars. As the Solar System contains gas giants but little cometary dust, the thick disc could host analogue systems that formed many Gyr before the Sun.Comment: accepted by MNRAS Letters; 5 pages, 4 figure
    • …
    corecore