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Abstract—Robust performance of finite length homogeneous
vehicular platoons is analyzed, where disturbances and constant
delays in the inter-vehicle communication are present. The goal
of the paper is to compare and evaluate the accuracy and
computational cost of several Lyapunov-Krasovskii functional
(LKF) based methods. The potential of the approach in analyzing
platoon performance is that it can be extended to cope with
time-varying delays, large scale systems, vehicle model uncertain-
ties and platoon heterogeneity. Simple delay-independent, delay-
dependent and discretized complete LKF based performance
criteria are presented.

I. INTRODUCTION

The challenge in designing and analyzing longitudinal
control systems for a platoon of vehicles is due to wide range
of problems one should deal with simultaneously. The vehicle
is a nonlinear system with unknown components and time-
varying parameters, the control action may be saturated and
delayed by the engine and brake systems, the sensor signals are
affected by noise, the communication is imperfect (packet loss,
transmission delay, discrete event property) and the platoon
may consists of vehicles with very different dynamics. Fur-
thermore, it is not enough to check stability and performance
of a finite length platoon, the notion of string stability - the
ability of the vehicle string to attenuate disturbances as it is
propagated along the platoon - must be examined in order to
guarantee the scalability of the control algorithms [1]–[4].

A wide range of tools are available which analyze some
components of the above set of problems. For example string
(or mesh) stability of interconnected systems is analyzed by
means of vector Lyapunov functions [5]. Heterogeneity in
platoon dynamics is discussed in [6], the effect of random
packet loss is examined in [7] and vehicle model uncertainty
in [8].

The effects of communication and actuation delays are
analyzed by many authors [9]–[14]. In each of these papers
constant delay is assumed and a frequency domain criteria is
proposed for the H∞-norm of the error propagation transfer
function being less than one. There are several drawbacks
of the frequency-domain approaches. (1) They cannot be
generalized to cope with time-varying delays and time-varying
parametric uncertainties. (2) There are platoon control algo-
rithms where the error propagation transfer function cannot be
computed. For example when predecessor and leader following
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controllers with constant spacing policy receive both spacing
and acceleration demand information. (3) For inputs and
outputs not belonging to signal spaces inducing H∞-norm on
the system cannot be analyzed in this way. For example a
peak-to-peak analysis to determine the maximal spacing errors
require `1-norm computation [8].

These obstacles in the elaboration of a unified framework
for the analysis of vehicular platoons motivate the consid-
eration of Lyapunov-Krasovskii approaches applied in many
papers in the area of networked control systems. In one of
the most related papers, nonlinear interconnected fuzzy models
with delayed control inputs are analyzed and a decentralized
controller is designed by using LKF and explicit model trans-
formation for a radar gimbal stabilization system [15].

The goal in this paper is to compare and evaluate the
accuracy and computational cost of several LKF based meth-
ods including a simple delay-independent, two simple delay-
dependent methods with implicit and explicit model transfor-
mations, respectively, and a discretized complete LKF based
method. In order to be able to evaluate these methods, the
constant communication delay case is considered where the
performance level can be computed accurately.

The paper is organized as follows. In Section II the
platoon model is presented. The LKF methods to be tested
are presented in Section III and the results are summarized in
Section IV.

A. Notations

Let Ln denote the set of all mappings x : [0,∞) 7→ Rn
which are Lebesgue-measurable. Let Ln2 denote the square
integrable signals with norm defined by ‖x‖22 =

∫∞
0
‖x(t)‖2dt,

where ‖x(t)‖ denotes the Euclidean norm, i.e. Ln2 = {x ∈ Ln :
‖x‖2 < ∞}. The induced L2-norm of linear time-invariant
(LTI) systems that are bounded and analytic in the open right-
half plane is computed as ‖G‖∞ = supω∈R σ̄(G(jω)). The
ith element of vector x is denoted by xi. Matrix inequality
M > 0 denotes that M is symmetric and positive definite.
The transpose of a matrix M is denoted by MT .

II. PLATOON MODEL

Let the ith vehicle be described by the following third-order
continuous-time state-space model

ṗi(t) = vi(t), (1a)
v̇i(t) = qi(t) + di(t), (1b)

q̇i(t) = − 1

τi
qi(t) +

gi
τi
ui(t), (1c)

where pi, vi denote position and velocity, di is a disturbance
representing both outer effects and modeling error, qi is an
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internal state such that the acceleration of the vehicle is ai(t) =
qi(t) + di(t). The leader vehicle is driven by a human driver,
u0 denotes the acceleration demand computed from the pedal
signals. ui, i = 1, 2, ..., n for the follower vehicles denote the
acceleration demand generated by the controllers.

Let the distributed platoon controller be given and designed
for a constant spacing policy introduced in [16]. It utilizes
information from local radars (relative position ei and rela-
tive speed δi) and receives acceleration ai through a V2V
communication network from both the preceding and lead
vehicle. The effect of the network is modeled by a constant
time-delay, denoted by h. Taking inter-vehicle communication
delays into account, the controller can be described by the
following equations

u1(t) =− k1δ1(t)− k2e1(t) + a0(t− h) (2a)
ui(t) =− k1βδi(t)− k2βei(t)

+ ka0a0(t− h) + ka1ai−1(t− h)

− k1α(vi(t− h)− v0(t− h))

− k2α(pi(t− h)− p0(t− h), i = 1, ..., n (2b)

where the k∗ are constant parameters, δi := vi − vi−1 and
ei := pi − pi−1 + L with prescribed spacing L set to zero in
the analysis without loss of generality.

If (2) is inserted into (1c), the closed-loop system depends
on both the actual disturbance inputs and their delayed values.
In order to simplify the analysis additional dynamics can be
introduced for the disturbances so the system contains only
single state delays. It is common practice to normalize the
disturbances as

di(t) = Wd,i(s)d0i(t), ‖d0i‖2 ≤ 1, i = 0, .., n (3)

where Wd,i(s) is a strictly proper transfer function with state-
space realization

ẋdi(t) =Adxdi(t) +Bdd0i(t) (4a)
di(t) =Cdxdi(t) (4b)

Putting (1), (2) and (4) together and applying state transfor-
mation pi → pi − pi−1 and vi → vi − vi−1, the closed-loop
platoon model reveals the form

ẋ(t) =Ax(t) +Ahx(t− h) +Bw(t) (5a)
z(t) =Cx(t) +Dw(t) (5b)

where x = [xTd0, q0, x
T
d1, e1, δ1, q1, · · · , xTdn, en, δn, qn]T , w =

[u0, d1, · · · , dn]T , z = [e1, · · · , en]T and D = 0.

III. ANALYSIS OF H∞ PERFORMANCE OF SYSTEMS WITH
SINGLE STATE DELAY

In this section a set of LMI conditions are provided which
differ in complexity, i.e. the number of variables and the size
of the LMIs. The accuracy of each methods when applying
for vehicular platoons with constant communication delays are
evaluated in the next section.

Consider the linear time invariant system (5) with initial
condition

x(t) = φ(t), t ∈ [−h, 0] (6)

where φ : [−h, 0] → R is a given continuous function. Let
xt(ξ) denote x(t + ξ) for ξ ∈ [−h, 0]. All of the following
criteria for

‖C(sI −A− eshAh)B +D‖∞ < γ (7)

i.e. the H∞ norm of system (5) being less than γ > 0 can be
derived based on [17, Proposition 8.3].

A. Simple delay-independent criterion (DI-LKF)

Let the LKF candidate be

V (xt) = xT (t)Px(t) +

∫ t

t−h
xT (θ)Qx(θ)dθ. (8)

In [18] LMI conditions are derived for the stability of system
(5) with w(t) = 0.

Theorem 1: Consider the system (5) with initial condition
φ ≡ 0. If there exist real matrices P = PT > 0, Q = QT

such that ATP + PA+Q PAh PB CT

AThP −Q 0 0
BTP 0 −γI DT

C 0 D −γI

 < 0 (9)

then system (5) is asymptotically stable and has H∞ norm less
than γ.

B. Simple delay-dependent criterion based on explicit model
transformation (EM-LKF)

By using an explicit model transformation

x(t− h) = x(t)−
∫ 0

−h
ẋ(t+ θ)dθ

and LKF candidate

V (xt) = x(t)TPx(t) +

∫ 0

−h

∫ t

t+θ

ẋ(η)Zẋ(η)dηdθ

+

∫ t

t−h
xT (η)Qx(η)dη. (10)

as in [19], the following theorem can be derived.

Theorem 2: Consider the system (5) with initial condition
φ ≡ 0. If there exist real matrices P = PT > 0, Q = QT ,
Z = ZT > 0, and Y , W such that Λ11 ∗ ∗ ∗

Λ21 Λ22 ∗ ∗
−hY T −hWT −hZ ∗

Λ41 hBTZAh 0 Λ44

 < 0 (11)

where ∗ denotes symmetric elements and

Λ11 = PA+ATP + Y + Y T + hATZA+Q+ CTC

Λ21 = AThP − Y T +W + hAThZA

Λ41 = BTP + hBTZA+DTC

Λ22 = −Q−W −WT + hAThZAh

Λ44 = hBTZB +DTD − γ2I

Then system (5) is asymptotically stable and has H∞ norm
less than γ.



C. Simple delay-dependent criterion based on implicit model
transformation (IM-LKF)

The LKF candidate is the same as for the explicit model
transformation (10), but in this case the so called implicit
model transformation is applied [17, Section 5.5.2]. The con-
ditions for stability is presented in [17, Prop. 5.16].

Theorem 3: Consider the system (5) with initial condition
φ ≡ 0. If there exist real matrices P = PT > 0, S = ST ,
XT = X and Y such that

Λ ∗ ∗ ∗
AThP − Y T −S ∗ ∗
BTP +DTC 0 DTD − γ2I ∗
−Y A0 −Y A1 −Y B − 1

hX

 < 0

(12)
where Λ = PA+AP+S+hX+Y +Y T +CTC, then system
(5) is asymptotically stable and has H∞ norm less than γ.

D. Discretized complete LKF (DF-LKF)

Consider the following complete quadratic LKF

V (xt) = xT (t)Px(t) + 2xT (t)

∫ 0

−r
Q(ξ)x(t+ ξ)dξ

+

∫ 0

−r

∫ 0

−r
xT (t+ ξ)R(ξ, η)x(t+ η)dηdξ

+

∫ 0

−r
xT (t+ ξ)S(ξ)x(t+ ξ)dξ (13)

The matrix functions Q,S and R can be chosen to be piecewise
linear continuous functions [20]. For this, the interval [−h, 0]
(or [−h, 0]× [−h, 0]) is divided into N (or N by N ) segments
of length l = h

N . Each segment indexed by p or (p, q) can be
described with the help of matrix parameters Qp, Sp, Rpq =
RTqp, p, q = 0, 1, 2, . . . , N so that for 0 ≤ α ≤ 1 and 0 ≤ β ≤
1

Q(−pl + αl) = (1− α)Qp + αQp−1
S(−pl + αl) = (1− α)Sp + αSp−1

and

R(−pl + αl,−ql + βl) ={
(1− α)Rpq + βRp−1,q−1 + (α− β)Rp−1,q α ≥ β
(1− β)Rpq + αRp−1,q−1 + (β − α)Rp,q−1 α < β

Before presenting Theorem 4 some notations must be intro-
duced.

Q̄ = [ Q0 Q1 . . . QN ]

S̄ =
1

l
diag(S0 S1 . . . SN )

R̄ =


R00 RT10 . . . RTN0

R10 R11 . . . RTN1
...

...
. . .

...
RN0 RN1 . . . RNN


∆ =

 ∆11 ∗ ∗
QTN −AThP SN ∗
−BTP −DTC 0 −DTD + γ2I


∆11 = −PA−ATP −Q0 −QT0 − S0 − CTC
Sd = diag{S0 − S1, S1 − S2, . . . , SN−1 − SN}

Rd =


Rd11 Rd12 . . . Rd1N
Rd21 Rd22 . . . Rd2N

...
...

. . .
...

RdN1 RdN2 . . . RdNN


Rdpq = l(Rp−1,q−1 −Rpq)

Ds =

[
Ds

01 Ds
02 . . . Ds

0N
Ds

11 Ds
12 . . . Ds

1N
Ds
w1 Ds

w2 . . . Ds
wN

]

Ds
0p =

l

2
AT (Qp−1 +Qp) +

l

2
(R0,p−1 +R0p)

−(Qp−1 −Qp)

Ds
1p =

l

2
ATh (Qp−1 +Qp)−

l

2
(RN,p−1 +RNp)

Ds
wp =

l

2
BT (Qp−1 +Qp)

Da =

[
Da

01 Da
02 . . . Da

0N
Da

11 Da
12 . . . Da

1N
Da
w1 Da

w2 . . . Da
wN

]

Da
0p = − l

2
AT (Qp−1 −Qp)−

l

2
(R0,p−1 −R0p)

Da
1p = − l

2
ATh (Qp−1 −Qp) +

l

2
(RN,p−1 −RNp)

Da
wp = − l

2
BT (Qp−1 −Qp)

Theorem 4: Consider system (5) with initial condition φ ≡
0. If there exists real matrices P = PT , Qp, Sp = STp , Rpq =
RTqp, p, q = 0, 1, . . . , N such that[

P Q̄
Q̄T R̄+ S̄

]
> 0 (14a) ∆ ∗ ∗

−DsT Rd + Sd ∗
−DaT 0 3Sd

 > 0 (14b)

satisfied, then the system is asymptotically stable and has H∞
norm less than γ.

IV. RESULTS

The homogeneous vehicle platoon of length n+1 is tested
with the following parameter setting: τi = 0.7, gi = 1, k1 =
0.7, k2 = 0.1127, k1α = 0.4642, k2α = 0.0564, k1β = 0.2358,
k2β = 0.0564, ka1 = 0.0449, ka0 = 0.9551, Ad = −5, Bd =
5 and Cd = 1. The tests are carried out by computing the H∞
norms of SISO systems by different computation methods.

A good approximation of the true performance levels can
be computed by zero-order hold transformation of system (5)
to discrete-time with a sufficiently small sampling time Ts =
0.01s. It is chosen to be a divisor of the tested delay values,
i.e. h(k) = kTs. Then the delays can be interpreted as a chain
of shift operators. H∞ performance levels γ(wj → zi) from
input wj to output zi of this system serve as reference values
and are denoted by γR(wj → zi).

A. Effect of network sampling time

First this discrete-time reference model is compared with a
multi-rate discrete-time model proposed in [8], where measure-
ments available locally are sampled with Ts and those received



from the network are sampled by Tn, an integer multiple of
Ts. The goal of the comparison is to evaluate the effect of rare
network sampling times. In the range of h ∈ [0, 0.1] it can be
concluded that

• The network sampling time has significant effect on
the channel u0 → e1. The performance level increases
about 8.5% at Tn = 0.2s with respect to the case
Tn = Ts.

• For other input-output pairs the effect of network
sampling time is not significant.

• On channel u0 → e1 the relative difference between
the two models is less than 10%.

B. Evaluation of LKF methods

In Figures 1 and 2 the accurate performance levels com-
puted based on the discrete-time reference model are shown
from inputs u0 and d0, respectively, to the spacing errors ei.
It can be seen that the spacing error is decreasing along the
platoon (with i increasing), i.e. the platoon is string stable.
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Fig. 1. Accurate performance values as function of network transmission
delay γR(h) from input u0

It can also be seen that the worst-case gain is increasing as
the delay increases. It is not surprising therefore, that the delay-
independent conditions (DI-LKF) are infeasible. Due to the
feed-forward terms in the controller a sufficiently long constant
delay can completely deteriorate the performance.

Results of other LKF methods are comparable with the true
values plotted in Figures 1 and 2, therefore the relative errors
of the computed performances

γ∗ − γR
γR

100 [%]

are shown in Figures 3-5. Here ∗ denotes one of the LKF
methods. For the channel u0 → e1 all methods arrives to the
accurate results γR. From Figures 3-5 it can be concluded that
the discretized complete LKF method achieves the accurate
values even with single linear matrix functions Q() and R(, ).
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Fig. 2. Accurate performance values as function of network transmission
delay γR(h) from input d0
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Fig. 3. Relative performance values for LKF methods with respect to the
reference values, as functions of network transmission delay from input u0 to
output e2. The discretized complete LKF methods (DF-LKF) approximately
coincide with the values of the reference model

In Table I the performance and computational cost of the
methods for n + 1 = 5 vehicles and for a small and a larger
delay are shown. It can be observed that as the number of
variables increases so the computation time and the accuracy
increases.

V. CONCLUSIONS

Lyapunov-Krasovskii functionals are used to analyze the
effects of constant network transfer delays on performance of
vehicular platoons. It is shown that the discretized complete
LKF approach with very few segments (N = 1) results
in accurate performance values. Its computational cost is
tolerable so the approach is potentially applicable to extend
the analysis toward handling time-varying delays, uncertainties
and distributed Lyapunov function approaches.
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