
Visualization of Traffic Sign Related Rules Used 
in Road Environment-type Detection* 

 

Z. Fazekas1, G. Balázs2, A. Boulmakoul3, and P. Gáspár1 
1 Institute for Computer Science and Control (SZTAKI), Budapest, Hungary 

2 Zukunft Mobility GmbH, Kösching, Germany 
3 Computer Science Department, Faculty of Sciences and  

Technologies of Mohammedia, Hassan II Casablanca University, Morocco 
e-mail: zoltan.fazekas@sztaki.hu, gabor.balazs@zf.com,  
azedine.boulmakoul@gmail.com, peter.gaspar@sztaki.hu 

 
 

Abstract— A heuristic rule-based approach was proposed in 
a recent paper for the detection of the urban road environ-
ment-type (RET), such as downtown, residential area, and 
business/industrial area, that characterizes the road envi-
ronment around an ego-car. The RET detection approach 
takes into account the relevant traffic signs (TSs) that are vi-
sible from the ego-car. It is assumed that the TS data, name-
ly the type and the location of each detected TS along the 
route, is made available for the purpose by an on-board TS 
recognition system. The continually updated TS data is ag-
gregated and evaluated in a multi-scale manner by the RET 
detection system. In the present paper, the heuristic rules  
employed within the mentioned system  that handle the 
competition situations arising between the RET-candidates 
selected for and representing the various distance-scales are 
visualized in a vividly descriptive manner. The visualization 
of the rules makes the decision process easier to understand, 
furthermore, it facilitates the re-use, the adaptation and the 
extension of the rule-set for other road-related applications 
that rely on TS and possibly on other road-related data. A 
summary of the RET detection results from the mentioned 
paper is included herein to make the paper self-contained. 

I. INTRODUCTION 
The sensing, computing and detection capabilities that 

have already been made available, and those that are ex-
pected to be made available in the near future on-board 
new production cars open fresh avenues in the develop-
ment of smart driving solutions, and of additional func-
tions and subsystems within advanced driver assistance 
systems (ADAS) [1]. A viable way toward such solutions, 
functions and subsystems is to put the gathered ADAS da-
ta  concerning the detected vehicles, lanes, road objects, 
and the ego-vehicle itself  to further use [2].  

A traffic sign (TS) based urban road environment-type 
(RET) detection system was proposed in [3], which effec-
tuate a supplemental driver assistance function along these 
lines; it relies on an existing ADAS subsystem, namely 
the TS recognition (TSR) subsystem, see e.g., [4]. The 
RET detection system gathers TS data along the route 
with the help of the TSR subsystem, and employs a sto-
chastic change detection method in respect of the collect-
ed TS data to identify RET change-points. 

 
* The work presented herein was supported by the National Re-

search, Development and Innovation Office through the 2018-2.1.10-
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Several variants of the aforementioned TS-based RET 
detection system were proposed later [5], [6], [7] and [8]. 
These rely on different computing techniques ranging 
from the shallow artificial neural networks (ANNs)  ei-
ther modular [7], or non-modular [6] ones  to the heuris-
tic rule-based decision making techniques [8]. Some of 
these systems, namely the ones presented in [5], [6], and 
[7], use additional input data, such as types and location 
of the encountered crossroads (CRs) along the route.  

It should be noted that other types of input data (e.g., 
the number of dead-end roads, regularity of the street pat-
tern, length of green/unbuilt sections) could be also consi-
dered for the given purpose. Such data could be gathered 
with a smart car equipped with a camera and LiDAR, but 
in most cases are available/derivable from geographical 
databases, as well.  

Interestingly, the above types of data were among 
those used in [9] to assess the relationship between featu-
res of UK cities and certain socio-economic indicators, 
and in [10] to valorize street segments in the French Rivi-
era.  

In the studies presented in [5] to [8], three urban RETs 
were considered by the implemented systems. The road 
environment sweeping past the ego-car was classified in-
to one of the following categories: downtown (Dt), resi-
dential (Res), and business/industrial areas (Ind).  

II. BACKGROUND 

A. RET Detection  An Important ADAS Function 
Initially, the authors of the present paper were not fully 

convinced whether the proposed ADAS function was of 
any practical significance, or not. Its usefulness had been, 
however, confirmed by a prior driving simulation study 
[11].  

The effect of driving experience on drivers’ adaptation 
to road environment complexity in urban areas was inves-
tigated in the cited study via monitoring drivers driving in 
a computer-simulated environment and via analyzing the 
driving data gathered.  

Three levels of road environment complexity  match-
ing roughly the aforementioned urban RETs  were used 
in the experiments. The drivers participating in the expe-
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riments were grouped into three groups according to their 
driving experience.  

It turned out that the most experienced drivers display-
ed a greater degree of adaptation to increasingly complex 
urban road environments than the drivers in the other two 
groups. The authors of the cited paper opine that the dri-
ving experience results in an enhanced ability to appro-
priately assess the demands of the road environment.  

For the drivers lacking prolonged driving experience, a 
RET detection ADAS function would be beneficial in-
deed. In the context of self driving cars, the information 
on actual RET is also important; this information can be 
used in choosing appropriate speed and acceleration/de-
celeration. 

B. TS-based RET Detection 
In the TS-based RET detection systems brought up in 

the Introduction, the actual RET is inferred from the 
types and the along-the-route frequencies of certain TSs. 
The systems take into account only the relevant TSs that 
are visible from the ego-car, and use only an informative 
subset of TS-types for the decision making. The subset is 
shown in Fig. 1.  

The TSs are grouped into three groups; the ones ap-
pearing within the group on the left are more typical to Dt 
areas, while the ones in the middle are more typical to the 
Ind areas, finally, the ones within the group on the right 
are more typical to the Res areas. 

 

 
Figure 1. TSs used for the purpose of RET detection. 

It is assumed that the TS data, namely the type and the 
location of each detected TS along the route, is made 
available for the purpose by an on-board TSR system. 

C. Car-based Data Collection Trips 
Several car-based data collection trips were carried out 

in respect of the TSs and urban RETs in three urban areas 
within Hungary. For these trips a tablet-based Android 
application was developed to facilitate manual data entry 
in respect of TSs and the RETs encountered along the 
route. The manual data logging was the task of a data en-
try assistant. The app geo-tags the data entries (e.g., the 
TS locations) and records the car-trajectory in an on-go-
ing manner. However, the recorded geo-coordinates are 
not used directly in the RET calculations, only the path-
lengths between the recorded locations are used. For 
more details (e.g., maps, photos of typical road environ-
ments) on the data collection, see [3]. 

III. THE HEURISTIC RULE-BASED RET-DETECTION 
SYSTEM 

A heuristic rule-based approach was proposed in [8] for 
the detection of the urban RET from an ego-car. In this 
section, the main stages of the processing carried out by 
that system is summarized to make the present paper self-
contained. In Section IV an intuitive graphic representa-
tion of the heuristic rules is introduced. It makes the com-
petition handling procedure amongst the RET-candidates 

more understandable. The graphical representation em-
ployed herein facilitates the re-use, the adaptation and the 
extension of the rule-set for other road-related applications 
that rely on TS, and possibly on other road-related data. 

A. Multi-scale Evaluation of the TS-occurrences 
To explore the relationship between TSs and RETs a-

long a route profusely, it is important to consider TS oc-
currences along different path-lengths measured back-
wards from the actual car-position. The motivations for 
this are as follows. The size of the road environments may 
vary. The distances between consecutive TSs may differ 
radically even within a given road environment, but also 
among different road environments. The selection of driv-
ing path can considerably affect how frequently TSs occur 
along the route [12]. By using TS data aggregated for se-
veral path-lengths, one can retain information that other-
wise would be lost due to a single averaging effect. 

For the above reasons, and to keep the number of scales 
low, three different path-lengths were selected for each of 
the TS-based RET detection systems mentioned in the 
Introduction. These path-lengths are the last 0.25 km, 0.5 
km, and 1 km of the car-trajectory. The aggregations and 
evaluations over these trajectory-segments will be referred 
to as short (SR), medium (MR), and long-range (LR) ag-
gregations/evaluations, respectively.  

The continually updated TS data is aggregated and 
evaluated in a multi-scale manner by the heuristic rule-ba-
sed RET detection system described in [8]. These heuristic 
rules handle the competition situations between RET can-
didates computed for the different distance-scales. The 
rules rely on categories (e.g., Greatest, Loser) borrowed 
from the sport-jargon, while these are derived and aggre-
gated from the scores associated with the TS-occurrences 
over SR, MR and LR trajectory-segments. 

B. Individual and Aggregated Scores 
A procedure that estimates the influence of input signal 

values (e.g., the number of TS-occurrences that belong to 
the TS-types shown in the left group of Fig. 1)  along a 
given trajectory-segment  on the decision concerning 
RETs in a heuristic manner, and provides the basis for the 
comparison across different RETs was proposed in the 
above cited paper.  

The scores associated with the TS-occurrences are ag-
gregated (e.g., summed) for each RET over each of the 
distance-scales. After aggregation, Dt could score, say, 9, 
Ind 4, and Res -5 for SR, while Dt could score 5, Ind -1, 
and Res -7 for MR, and lastly, Dt 12, Ind -6, and Res 2 for 
LR. For details on how to choose the individual scores for 
the TS-occurrences and ways to aggregate the individual 
scores, see [8]. 

C. Categories for Competition Handling  Borrowed 
from the Sport Jargon 

Categories are used for the purpose of characterizing 
and weighing the relationships based on the aggregated 
scores for each scale, and to facilitate the comparison of 
the ‘competing’ RET candidates. The labels of these cate-
gories were borrowed from the sport jargon: Kicker: the 
aggregated score for a given RET in a particular scale 
exceeds each of the other RETs’ aggregated scores in the 
same scale at least by some predefined difference. Great-
est: the aggregated score for a given RET in a particular 
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scale exceeds each of the other RETs’ aggregated scores 
in the same scale. Second greatest: the aggregated score 
for a given RET in a particular scale exceeds each but one 
of the other RETs’ aggregated scores in the same scale. 
Loser: the aggregated score for a given RET in a particu-
lar scale is less than each of the other RETs’ aggregated 
scores, respectively, in the same scale at least by some 
predefined difference. 

For each scale, the aggregated scores are checked 
against these criteria. In each scale, each of the mentioned 
categories is associated with at most one RET at a parti-
cular road-location. This property is ensured, if necessary, 
by randomized selection between the possible RETs for 
the given category. For the sample scores given in the pre-
vious Subsection as an example, Dt would be Kicker and 
also Greatest, Ind would be the Second greatest, and Res 
would be a Loser for the purpose of RET selection at a 
particular road location.  

D. Heuristic Decision Rules 
Taking the categories determined for the different dis-

tance-scales (i.e., for SR, MR and LR), and their associa-
tions with the various RETs as input, sequential decision 
rules are used to determine the perceived RET. The fol-
lowing general order of the evaluation is adopted. It starts 
with the rules for the SR; these are evaluated firstly to 
ensure that the RET detection function reacts promptly to 
sudden changes; then, the rules concerning the LR cate-
gories are evaluated, which is followed by those concern-
ing the MR categories. Furthermore, within each scale the 
rules concerning the Kicker and the Loser are evaluated 
before the ones concerning Greatest and Second greatest 
categories. Seven rules make up the rule-set used in the 
RET detection system. These are evaluated one after the 
other; however, once a given rule has been satisfied for 
the given road location, then the remaining rules are 
skipped. The rules serve the purpose of choosing between 
the ‘competing’ RET categories. The textual rules are giv-
en in [8].  

IV. UNDERSTANDING THE COMPETITION HANDLING 
RULES VIA VISUALIZATION  

In this section, the decision rules mentioned above are 
transcribed into a graphic representation to make them 
more understandable for a developer (e.g., of a road-rela-
ted heuristic rule-based detection system for some other 
purpose). The resulting transcriptions (i.e., the graphic 
rule representations) look like graphical database queries 
[13]. 

A. Legend for the graphical representation  
The cells of the table that are relevant for a given rule 

are coloured red, or green, while the categories appearing 
in these are printed in black (Figs. 2 - 8). E.g., SR Kicker 
is printed in black with a green background in Fig. 2, 
which represents Rule 1, while LR Greatest, also printed 
in black, is printed with a red background.  

Each cell refers to the RET associated with the category 
indicated in respect of the given distance-scale (e.g., SR).  

The green background within a cell indicates that the 
corresponding RET is to be chosen by that rule  if at all 
reached  as the RET perceived at the current road loca-
tion of the ego-car.  

SR MR LR

Kicker Kicker Kicker

 Greatest  Greatest  Greatest

Second greatest Second greatest Second greatest

Loser Loser Loser  
Figure 2. Graphic representation of Rule 1. 

 
 

SR MR LR

Kicker Kicker Kicker

 Greatest  Greatest  Greatest

Second greatest Second greatest Second greatest

Loser Loser Loser  
Figure 3. Graphic representation of Rule 2. 

 
 

SR MR LR

Kicker Kicker Kicker

Greatest  Greatest Greatest

Second greatest Second greatest Second greatest

Loser Loser Loser  
Figure 4. Graphic representation of Rule 3. 

The red background indicates that the corresponding 
RET is rejected (i.e., the perceived RET differs from this 
one). The rotated ‘=’ and ‘ ’ signs express the required 
relation between the RETs associated with the correspond-
ing cells.  

Note that Rules 1 - 3 handle the case of a fast-changing 
road environment; these rules are presented graphically in 
Figs. 2 - 4; while Rules 4 - 7 handle constant, and slowly 
changing road environment. These rules are represented in 
Figs. 5 - 8. 

V. DETECTION RESULTS 
After experimenting with various score-calculations, 

and with various difference-thresholds for the Kicker and 
Loser category-assignments, an agreement in respect of 
the RETs of 66.5% was achieved for the test-route in Vác, 
Hungary. The length of this test-route was about 10 km.  

This agreement is not impressive, but considering that 
only a small set of TSs was used for the purpose, this per-
centage is still reasonable. For details, see [8].  

VI. CONCLUSIONS AND FUTURE WORK 
A heuristic approach for RET detection around an ego-

car was presented in [8]. The system described therein re-
lies on TS data detected by an on-board TSR system. The 
collected TS data is stored in a FIFO queue, and repetiti-
vely processed in a multi-scale manner as explained in 
Subsect. III.A.  
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SR MR LR

Kicker Kicker Kicker

Greatest  Greatest Greatest

Second greatest Second greatest Second greatest

Loser Loser Loser  
(a) 

 

SR MR LR

Kicker Kicker Kicker

Greatest  Greatest Greatest

Second greatest Second greatest Second greatest

Loser Loser Loser  
(b) 

Figure 5. Graphic representation of Rule 4. The rule was brought up 
into two sub-rules; these are represented in separate tables (a) and (b). 

 

SR MR LR

Kicker Kicker Kicker

Greatest  Greatest Greatest

Second greatest Second greatest Second greatest

Loser Loser Loser  
Figure 6. Graphic representation of Rule 5 

 

SR MR LR

Kicker Kicker Kicker

Greatest  Greatest Greatest

Second greatest Second greatest Second greatest

Loser Loser Loser  
Figure 7. Graphic representation of Rule 6. 

 

Last RET kept  
Figure 8. Graphic representation of Rule 7. 

From time to time, or perhaps more felicitously stated: 
from road-location to road-location, the choice between 
the RET-candidates selected for the different distance-
scales is not evident, that is, a competition situation be-
tween the RET-candidates has appeared. The computation 
involved the candidate-selection is based on TS occur-
rences within the road-segments corresponding to the 
different distance-scales. To resolve the mentioned com-
petition situation, the RETs are labeled  for each scale  
with categories borrowed from the jargon used by sport 
competition juries. Then, the inter-range (i.e., overall, or 
final) decision on the actual RET perceived is made via 
the sequential evaluation of the proposed heuristic rules. 
In the present paper, these rules have been formulated in 
an intuitive, graphic (tabular) manner. 

 Assuming that a real-time TSR system is available on-
board, and its detected TS data can be accessed for further 
processing (also in a real-time), then the management of 
the FIFO queue, and the evaluation of a few simple rules 
can be carried out also in a real-time manner (in respect of 
both the TSs and the RETs). This computation necessita-
tes only low extra implementation costs.  

The RET detection results achieved are compared in the 
cited paper to those acquired by an ANN-based imple-
mentation that relies solely on TS data. The main advan-
tage of the rule-based approach is its readability and un-
derstandability, while heuristics amalgamates non-specific 
expert knowledge with commonsense. This advantage is 
further enhanced by the graphical representation employ-
ed herein. The proposed representation facilitates the re-
use, the adaptation and the extension of the rule-set for 
other road-related applications that rely on TS, and possib-
ly on other road-related data. 

The agreement percentage for the RET detection ap-
proach would probably improve if a richer set of TS types 
were considered in the decision making process. On the 
other hand, the use of further road-related categories  
supplementing the TS and CR categories already used in 
the cited papers  could facilitate the RET detection and 
improve its precision. Even the CR categories could be 
refined, and CRs could be extracted from a video-stream 
coming from an on-board camera, as described in [14]. 

We consider testing the RET detection methods  men-
tioned in the Introduction  on publicly available road-re-
lated datasets, e.g., on the Mapillary Vistas dataset (MVD) 
[15], as well. The MVD is large-scale street-level image 
dataset. It contains about 25 thousand high-resolution ima-
ges annotated into 66 object-categories. The images in the 
dataset were taken at numerous urban locations from 
around the world in different weather conditions, in dif-
ferent seasons and at varied daytimes. Furthermore, the 
images come from different imaging devices (mobile 
phones, tablets, etc.), and were taken by photographers 
with different experience. Even if the direct use the men-
tioned dataset is uncertain in our case, as our methods rely 
on road-object (e.g., TS, CR) detections along contiguous 
trajectory-segments of the ego-car, the labels and cate-
gories used within the dataset provide expansion direc-
tions for improving and generalizing our methods.  

Here, we list some of the more promising labels  parti-
cularly of static nature, i.e., excluding categories related to 
vehicles, people and animals  that are used in the annota-
tions of the images: support: pole, utility-pole, TS-frame; 
object: street-light, billboard, traffic-light, fire-hydrant, 
bench, bike-rack, mailbox, phone-booth; TS: its front-
side, its back-side; flat construction: road, sidewalk, curb-
cut, parking area, bike-lane, service-lane, rail-track, pedes-
trian-area; barrier: curb, fence, wall, other barrier, guard-
rail; structure: building, bridge, tunnel; road markings: ge-
neral, crossroad-zebra. Location and category data on 
these street-level objects could provide further clues for 
RET inference.  

The character of the road environment  even within 
the same socio-economic road environment  depends al-
so on whether one is driving along a main road, or uses 
minor roads. This aspect of the RET detection was inves-
tigated in [12] using the fractal dimension of the trajec-
tory, however, also the lane information from another 
ADAS subsystem could also be used for the purpose. 
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In order to achieve a RET detection precision necessary 
for automotive applications, an extensive international 
data collection effort would be imperative, as the urban 
textures of different geographical regions, cultures and 
countries differ significantly from one another.  
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