245 research outputs found

    ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ АНАЛИЗА МЕДИКО-БИОЛОГИЧЕСКИХ ДАННЫХ В ДЕТСКОЙ ЛЕЙКОЗОЛОГИИ

    Get PDF
    Рассматриваются две информационные технологии, реализованные в виде соответствующих программных комплексов и предназначенные для анализа многомерных медико-биологических данных: первая – система анализа данных, реализующая комплекс разнообразных статистических и нейросетевых методов на основных стадиях обработки данных; вторая –  система классификации групп риска  пациентов на основе гибридной нечеткой классификационной модели, обеспечивающей построение нескольких подмножеств Парето-оптимальных компактных и хорошо интерпретируемых классифицирующих правил

    Litterfall, litter decomposition and associated nutrient fluxes in Pinus halepensis: influence of tree removal intensity in a Mediterranean forest

    Full text link
    The online version of this article (doi:10.1007/s10342-015-0893-z) contains supplementary material, which is available to authorized users[EN] Our knowledge about the influence of silvicultural treatments on nutrient cycling processes in Mediterranean forests is still limited. Four levels of tree removal were compared in an Aleppo pine forest in eastern Spain to determine the effects on litterfall, litter decomposition and the associated nutrient fluxes after 12 years. Removal treatments included clearfelling, two shelterwood intensities (60 and 75 % of basal area removed) and untreated controls. Twelve years later, the basal area removed still explained 60 % of litterfall mass variance and 60 % of C, 52 % of N, 45 % of P, 17 % of K, 47 % of Ca and 60 % of Mg return variances. Litter decomposed somewhat more slowly in clearfellings compared to controls (p = 0.049), accumulated more Ca and released less K compared to the other three treatments. This was explained by contamination with mineral particles due to the poorly developed O horizon in clearfellings. We conclude that the management practices reduced the nutrient return via litterfall, but the nutrient release through decomposition seems poorly sensitive to canopy disturbance. In order to accurately quantify the harvesting impacts on nutrient cycling in this Mediterranean forest system, it is necessary to measure the litterfall of the understory layer.This work has been supported by a fellowship from the Generalitat Valenciana, Conselleria de Educacion, Formacion y Empleo awarded to L. Lado-Monserrat (BFPI/2008/041). Silvicultural treatments were carried out by the Mediterranean Centre for Environmental Studies (CEAM) through programme "I + D en relacion con la restauracion de la cubierta vegetal y otros aspectos de investigacion forestal". Dataloggers and probes were provided by the Generalitat Valenciana through Project "Efecto de diferentes sistemas de aclareo de masa forestal sobre la disponibilidad de agua, nutrientes y la regeneracion de la masa arborea y arbustiva en parcelas de pinar" (GV06/126). We acknowledge Joana Oliver, Ruth M. Tavera and Daniel Fortanet for their help in the laboratory and in the field. The authors wish to thank Francisco Galiana for his assistance, including help in fieldwork and providing information about the experimental design of the silvicultural treatments. Thanks also go to Rafael Herrera from the Centro de Ecologia, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela and two anonymous reviewers for critically reviewing the manuscript.Lado Monserrat, L.; Lidón, A.; Bautista, I. (2015). Litterfall, litter decomposition and associated nutrient fluxes in Pinus halepensis: influence of tree removal intensity in a Mediterranean forest. European Journal of Forest Research. 134(5):833-844. https://doi.org/10.1007/s10342-015-0893-zS8338441345Almagro M, Martínez-Mena M (2012) Exploring short-term leaf-litter decomposition dynamics in a Mediterranean ecosystem: dependence on litter type and site conditions. Plant Soil 358:323–335Alvarez A, Gracia M, Vayreda J, Retana J (2012) Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For Ecol Manage 270:282–290Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558Bates JD, Svejcar TS, Miller RF (2007) Litter decomposition in cut and uncut western juniper woodlands. J Arid Environ 70:222–236Binkley D (2008) Three key points in the design of forest experiments. For Ecol Manage 255:2022–2023Blair JM, Crossley DA Jr (1988) Litter decomposition, nitrogen dynamics and litter microarthropods in a southern Appalachian hardwood forest 8 years following clearcutting. J Appl Ecol 25:683–698Blanco JA, Zavala MA, Imbert JB, Castillo FJ (2005) Sustainability of forest management practices: evaluation through a simulation model of nutrient cycling. For Ecol Manage 213:209–228Blanco JA, Imbert JB, Castillo FJ (2006) Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For Ecol Manage 237:342–352Blanco JA, Imbert JB, Castillo FJ (2008) Nutrient return via litterfall in two contrasting Pinus sylvestris forests in the Pyrenees under different thinning intensities. For Ecol Manage 256:1840–1852Blanco JA, Imbert JB, Castillo FJ (2011) Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry 106:397–414Caldentey J, Ibarra M, Hernández J (2001) Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. For Ecol Manage 148:145–157Christensen JH, Krishna Kumar K, et al. (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K et al (Eds.) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USACortina J, Vallejo VR (1994) Effects of clearfelling on forest floor accumulation and litter decomposition in a radiata pine plantation. For Ecol Manage 70:299–310Entry JA, Rose CL, Cromack K Jr (1991) Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas fir ecosystem. Soil Biol Biochem 23:285–290Fabbio G, Merlo M, Tosi V (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe—the Mediterranean region. J Environ Manage 67:67–76Galiana F, Pérez-Badía R, Camarero E, Estruch V, Currás R (2001) Estimación de la Radiación solar incidente en pinares de Pinus halepensis sometidos a tratamientos selvícolas de cortas finales. In: Junta de Andalucía. Consejería de Medio Ambiente (Ed.) Actas del III Congreso Forestal Español. Junta de Andalucía. Granada (Original in Spanish)García-Plé C, Vanrell P, Morey M (1995) Litter fall and decomposition in a Pinus halepensis forest on Mallorca. J Veg Sci 6:17–22González Utrillas N, González Pérez E, Galiana F (2005) Variación del crecimiento diametral de la masa de pinar de carrasco en cortas finales experimentales, en los montes de Tuejar y Chelva (Valencia). IV Congreso Forestal Español. Zaragoza. Soc. Esp. Cien. For. (Original in Spanish)Guo LB, Sims REH (1999) Litter decomposition and nutrient release via litter decomposition in New Zealand eucalypt short rotation forests. Agric Ecosyst Environ 75:133–140GVA (1995) Mapa de Suelos de la Comunidad Valenciana. Chelva (666). Proyecto LUCDEME (Icona), Centro de Investigaciones sobre Desertificación y Conselleria d’Agricultura i Mig Ambient. Generalitat Valenciana. Valencia, Spain. (Original in Spanish)Hennessey TC, Dougherty PM, Cregg BM, Wittwer RF (1992) Annual variation in needle fall of a loblolly pine stand in relation to climate and stand density. For Ecol Manage 51:329–338Inagaki Y, Kuramoto S, Torii A, Shinomiya Y, Fukata H (2008) Effects of thinning on leaf-fall and leaf-litter nitrogen concentration in hinoki cypress (Chamaecyparis obtusa Endlicher) plantation stands in Japan. For Ecol Manage 255:1859–1867Jonard M, Misson L, Ponette Q (2006) Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes. Can J For Res 36:2684–2695Kim C, Sharik TL, Jurgensen MF (1996a) Canopy cover effects on mass loss, and nitrogen and phosphorus dynamics from decomposing litter in oak and pine stands in northern Lower Michigan. For Ecol Manage 80:13–20Kim C, Sharik TL, Jurgensen MF (1996b) Litterfall, nitrogen and phosphorus inputs at various levels of canopy removal in oak and pine stands in northern lower Michigan. Am Midl Nat 135:195–204Kim C, Son Y, Lee WK, Jeong J, Noh NJ, Kim SR, Yang AR, Ju NG (2012) Influence of forest tending (Soopkakkugi) works on litterfall and nutrient inputs in a Pinus densiflora stand. For Sci Technol 8:83–88Kimmins JP (2004) Forest ecology, a foundation for sustainable management and environmental ethics in forestry. Prentice-Hall, New JerseyKimmins JP, Mailly D, Seely B (1999) Modelling forest ecosystem net primary production: the hybrid simulation approach used in FORECAST. Ecol Modell 122:195–224Klemmedson JO, Meier CE, Campbell RE (1990) Litter fall transfers of dry matter and nutrients in ponderosa pine stands. Can J For Res 20:1105–1115Kunhamu TK, Kumar BM, Viswanath S (2009) Does thinning affect litterfall, litter decomposition, and associated nutrient release in Acacia mangium stands of Kerala in peninsular India? Can J For Res 39:792–801Lytle DE, Cronan CS (1998) Comparative soil CO2 evolution, litter decay, and root dynamics in clearcut and uncut spruce–fir forest. For Ecol Manage 103:121–128Molina AJ, Del Campo AD (2012) The effects of experimental thinning on throughfall and stemflow: a contribution towards hydrology-oriented silviculture in Aleppo pine plantations. For Ecol Manage 269:206–213Navarro FB, Romero-Freire A, Del Castillo T, Foronda A, Jiménez MN, Ripoll MA, Sánchez-Miranda A, Hutsinger L, Fernández-Ondoño E (2013) Effects of thinning on litterfall were found after years in a Pinus halepensis afforestation area at tree and stand levels. For Ecol Manage 289:354–362Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331Pérez Cueva AJ (1994) Atlas Climático de la Comunidad Valenciana. Colección Territori nº 4. Generalitat Valenciana. Conselleria d’Obres Publiques, Urbanisme i Transport, ValenciaPetritsch R, Hasenauer H, Pietsch SA (2007) Incorporating forest growth response to thinning within biome-BGC. For Ecol Manage 242:324–336Prescott CE (1997) Effects of clearcutting and alternative silvicultural systems on rates of decomposition and nitrogen mineralization in a coastal montane coniferous forest. For Ecol Manage 95:253–260Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22:1193–1200Prescott CE, Blevins LL, Staley CL (2000) Effects of clear-cutting on decomposition rates of litter and forest floor in forests of British Columbia. Can J For Res 30:1751–1757Roig S, Del Río M, Cañellas I, Montero G (2005) Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes. For Ecol Manage 206:179–190Sardans J, Peñuelas J, Rodà F (2005) Changes in nutrient use efficiency, status and retranslocation in young post-fire regeneration Pinus halepensis in response to sudden N and P input, irrigation and removal of competing vegetation. Trees 19:233–250Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manage 132:97–109Slovik S (1997) Tree physiology. In: Hüttl RF, Schaaf W (eds) Magnesium deficiency in forest ecosystems. Kluwer Academic Publishers, London, pp 101–214Taylor BR, Parkinson D (1988) Does repeated freezing and thawing accelerate decay of leaf litter? Soil Biol Biochem 20:657–665Torras O, Saura S (2008) Effects of silvicultural treatments on forest biodiversity indicators in the Mediterranean. For Ecol Manage 255:3322–3330Trofymow JA, Barclay HJ, McCullough KM (1991) Annual rates and elemental concentrations of litter fall in thinned and fertilized Douglas-fir. Can J For Res 21:1601–1615Wallace ES, Freedman B (1986) Forest floor dynamics in a chronosequence of hardwood stands in central Nova Scotia. Can J For Res 16:293–302Whitford WG, Meentemeyer V, Seastedt TR, Cromack Jr K, Crossley Jr DA, Santos P, Todd RL, Waide JB (1981) Exceptions to the AET model: deserts and clear-cut forest. Ecology 62:275–277Yin X, Perry JA, Dixon RK (1989) Influence of canopy removal on oak forest floor decomposition. Can J For Res 19:204–21

    Diplopia is frequent and associated with motor and non-motor severity in parkinson's disease : Results from the COPPADIS cohort at 2-year follow-up

    Get PDF
    Background and objective: Diplopia is relatively common in Parkinson's disease (PD) but is still understudied. Our aim was to analyze the frequency of diplopia in PD patients from a multicenter Spanish cohort, to compare the frequency with a control group, and to identify factors associated with it. Patients and Methods: PD patients who were recruited from January 2016 to November 2017 (baseline visit; V0) and evaluated again at a 2-year ± 30 days follow-up (V2) from 35 centers of Spain from the COPPADIS cohort were included in this longitudinal prospective study. The patients and controls were classified as "with diplopia" or "without diplopia" according to item 15 of the Non-Motor Symptoms Scale (NMSS) at V0, V1 (1-year ± 15 days), and V2 for the patients and at V0 and V2 for the controls. Results: The frequency of diplopia in the PD patients was 13.6% (94/691) at V0 (1.9% in controls [4/206]; p < 0.0001), 14.2% (86/604) at V1, and 17.1% (86/502) at V2 (0.8% in controls [1/124]; p < 0.0001), with a period prevalence of 24.9% (120/481). Visual hallucinations at any visit from V0 to V2 (OR = 2.264; 95%CI, 1.269-4.039; p = 0.006), a higher score on the NMSS at V0 (OR = 1.009; 95%CI, 1.012-1.024; p = 0.015), and a greater increase from V0 to V2 on the Unified Parkinson's Disease Rating Scale-III (OR = 1.039; 95%CI, 1.023-1.083; p < 0.0001) and Neuropsychiatric Inventory (OR = 1.028; 95%CI, 1.001-1.057; p = 0.049) scores were independent factors associated with diplopia (R = 0.25; Hosmer and Lemeshow test, p = 0.716). Conclusions: Diplopia represents a frequent symptom in PD patients and is associated with motor and non-motor severity

    Sleep Problems Are Related to a Worse Quality of Life and a Greater Non-Motor Symptoms Burden in Parkinson’s Disease

    Get PDF
    COPPADIS Study Group.[Introduction] The aim of the present study was to examine the frequency of self-reported sleep problems and their associated factors in a large cohort of PD patients.[Methods] PD patients and controls, recruited from 35 centers of Spain from the COPPADIS cohort were included in this cross-sectional study. Sleep problems were assessed by the Spanish version of the Parkinson’s disease Sleep Scale version 1 (PDSS-1). An overall score below 82 or a score below 5 on at least 1 item was defined as sleep problems.[Results] The frequency of sleep problems was nearly double in PD patients compared to controls: 65.8% (448/681) vs 33.5% (65/206) (p < 0.0001). Mean total PDSS score was lower in PD patients than controls: 114.9 ± 28.8 vs 132.8 ± 16.3 (p < 0.0001). Quality of life (QoL) was worse in PD patients with sleep problems compared to those without: PDQ-39SI, 19.3 ± 14 vs 13 ± 11.6 (p < 0.0001); EUROHIS-QoL8, 3.7 ± 0.5 vs 3.9 ± 0.5 (p < 0.0001). Non-motor symptoms burden (NMSS; OR = 1.029; 95%CI 1.015–1.043; p < 0.0001) and impulse control behaviors (QUIP-RS; OR = 1.054; 95%CI 1.009–1.101; p = 0.018) were associated with sleep problems after adjustment for age, gender, disease duration, daily equivalent levodopa dose, H&Y, UPDRS-III, UPDRS-IV, PD-CRS, BDI-II, NPI, VAS-Pain, VAFS, FOGQ, and total number of non-antiparkinsonian treatments.[Conclusion] Sleep problems were frequent in PD patients and were related to both a worse QoL and a greater non-motor symptoms burden in PD. These findings call for increased awareness of sleep problems in PD patients.Peer reviewe

    Diplopia Is Frequent and Associated with Motor and Non-Motor Severity in Parkinson’s Disease: Results from the COPPADIS Cohort at 2-Year Follow-Up

    Get PDF
    Malaltia de Parkinson; Fenotip; TremolorEnfermedad de Parkinson; Fenotipo; TemblorParkinson’s disease; Phenotype; TremorBackground and objective: Diplopia is relatively common in Parkinson’s disease (PD) but is still understudied. Our aim was to analyze the frequency of diplopia in PD patients from a multicenter Spanish cohort, to compare the frequency with a control group, and to identify factors associated with it. Patients and Methods: PD patients who were recruited from January 2016 to November 2017 (baseline visit; V0) and evaluated again at a 2-year ± 30 days follow-up (V2) from 35 centers of Spain from the COPPADIS cohort were included in this longitudinal prospective study. The patients and controls were classified as “with diplopia” or “without diplopia” according to item 15 of the Non-Motor Symptoms Scale (NMSS) at V0, V1 (1-year ± 15 days), and V2 for the patients and at V0 and V2 for the controls. Results: The frequency of diplopia in the PD patients was 13.6% (94/691) at V0 (1.9% in controls [4/206]; p < 0.0001), 14.2% (86/604) at V1, and 17.1% (86/502) at V2 (0.8% in controls [1/124]; p < 0.0001), with a period prevalence of 24.9% (120/481). Visual hallucinations at any visit from V0 to V2 (OR = 2.264; 95%CI, 1.269–4.039; p = 0.006), a higher score on the NMSS at V0 (OR = 1.009; 95%CI, 1.012–1.024; p = 0.015), and a greater increase from V0 to V2 on the Unified Parkinson’s Disease Rating Scale–III (OR = 1.039; 95%CI, 1.023–1.083; p < 0.0001) and Neuropsychiatric Inventory (OR = 1.028; 95%CI, 1.001–1.057; p = 0.049) scores were independent factors associated with diplopia (R2 = 0.25; Hosmer and Lemeshow test, p = 0.716). Conclusions: Diplopia represents a frequent symptom in PD patients and is associated with motor and non-motor severity.Solano Vila B. has received honoraria for educational presentations and advice service by UCB, Zambon, Teva, Abbvie, Bia

    Staging Parkinson's Disease Combining Motor and Nonmotor Symptoms Correlates with Disability and Quality of Life.

    Get PDF
    Introduction: In a degenerative disorder such as Parkinson's disease (PD), it is important to establish clinical stages that allow to know the course of the disease. Our aim was to analyze whether a scale combining Hoehn and Yahr's motor stage (H&Y) and the nonmotor symptoms burden (NMSB) (assessed by the nonmotor symptoms scale (NMSS)) provides information about the disability and the patient's quality of life (QoL) with regard to a defined clinical stage. Materials and methods: Cross-sectional study in which 603 PD patients from the COPPADIS cohort were classified according to H&Y (1, stage I; 2, stage II; 3, stage III; 4, stage IV/V) and NMSB (A: NMSS = 0-20; B: NMSS = 21-40; C: NMSS = 41-70; D: NMSS ≥ 71) in 16 stages (HY.NMSB, from 1A to 4D). QoL was assessed with the PDQ-39SI, PQ-10, and EUROHIS-QOL8 and disability with the Schwab&England ADL (Activities of Daily Living) scale. Results: A worse QoL and greater disability were observed at a higher stage of H&Y and NMSB (p < 0.0001). Combining both (HY.NMSB), patients in stages 1C and 1D and 2C and 2D had significantly worse QoL and/or less autonomy for ADL than those in stages 2A and 2B and 3A and 3B, respectively (p < 0.005; e.g., PDQ-39SI in 1D [n = 15] vs 2A [n = 101]: 28.6 ± 17.1 vs 7.9 ± 5.8; p < 0.0001). Conclusion: The HY.NMSB scale is simple and reflects the degree of patient involvement more accurately than the HΨ Patients with a lower H&Y stage may be more affected if they have a greater NMS burden
    corecore